
2024 Brazilian Technology Symposium

An automation-based strategy for monitoring
software requirement changes

Jose Souza
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

jose.diogo@sidia.com
0009-0007-9714-9520

Rennan Salgado
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

rennan.salgado@sidia.com
0009-0003-3068-4386

Edluce Veras
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

edluce.leitao@sidia.com
0009-0005-8222-5653

Bruno Ferreira
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

bruno.cardoso@sidia.com
0009-0001-4384-5025

Priscila Barros
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

priscila.barros@sidia.com
0009-0008-9082-2871

Lyan Mota
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

lyan.santiago@sidia.com
0009-0007-6558-4122

Jullianne Abreu
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

jullianne.abreu@sidia.com
0009-0001-6153-5418

Fabio Ramos
Requirements Apps

Sidia Instituto de Ciência e Tecnologia
Manaus, Brazil

fabio.coelho@sidia.com
0009-0005-5488-3552

Abstract—The definition and management of software require-
ments are essential for the development team to maintain coher-
ence and deliver the expected functionality to the customer in a
global software development environment. These requirements
define and guide the necessary parameters for the software
to function properly. However, during the software lifecycle,
requirements may change after initial deliveries or in projects
with continuous development. Managing these requirements can
become a complex activity, especially when multiple stakeholders
and multiple systems are involved during the development pro-
cess. In this article, we propose an automated software solution
to collect changes in requirements using a system used by the
customer. This will allow the opening of automatic tasks to notify
the requirements management team and the development team
appropriately. In this way, the team can analyze the collected
changes, conduct detailed assessments to analyze the impacts
and the necessary implementations to integrate the change into
the software as quickly and coherently as possible.

Keywords—software requirements; monitoring software;
change monitoring; requirement changes

I. INTRODUCTION

Monitoring requirements is a complex process that mainly
involves changes to requirements throughout the project’s de-
velopment. Automating this monitoring continuously, whether

creating, modifying, or removing requirements, is becoming
an increasingly adopted practice in software development
projects. Since the first meeting until production, more than
50% of these requirements undergo changes. [3]

With the advancement of technology, people increasingly
require systems to meet various needs such as resource man-
agement, health, and security. Although there is a wide range
of system solutions available, there are still many challenges
facing their projects. Most of these problems stem from
errors in the requirements management process; some of these
problems can be attributed to the fact that people were not
keeping track of which requirements were added to the project
flow. Studies have shown that implementing manual or auto-
mated monitoring practices for these requirements in reference
models of software development produced satisfactory results.
[1]

Requirements management needs a special attention in the
development process of a system, encompassing highly com-
plex processes such as change control, version control, status
tracking, and requirement tracing. The importance of each part
of the process is crucial, and managing these requirements
includes documenting dependencies among requirements, con-
trolling changes over identifiers, and correcting inconsistencies

ISSN 2447-8326. V.1 © 2024 BTSYM



2024 Brazilian Technology Symposium

between the requirement and project artifacts. [4] [6]
In software development methods, modifications have been

frequent to produce faster and more reliable systems. It is
more advantageous to automate the inclusion, modification,
or removal of these requirements from a project, making it an
essential part of successful software creation. [4]. In this con-
text, it is predicted that the use of tools incorporating artificial
intelligence, machine learning, among other techniques, will
contribute significantly to reducing development efforts. [12]

In the next sections, the concepts used for the development
and deployment of this system will be discussed, as well
as the benefits that continuous requirement monitoring can
offer if a routine of continuous monitoring is adopted in
development process. This takes into account software that
requires continuous integration of requirements, showing the
proposed architecture of the solution and providing a detailed
explanation of how the algorithm governing the system works,
followed by a brief discussion of the gains and challenges
provided by the implementation of this system.

II. METODOLOGY

Different business rules needed to be considered so that
tasks previously performed manually become automated in a
software development context.

Due to the large scale of projects developed, one of the
factors considered was the use of automated solution for
multiple teams because, in the manual process, the information
was decentralized and difficult to standardize.

Furthermore, this type of process requires constant checks
on the external source, making manual execution even more
susceptible to failures. Any inconsistency in requirement mon-
itoring can compromise the quality of the final software and,
consequently, fail to meet the customer’s expectations [2]

In the next section, the architecture of the proposed solution
will be presented, detailing generally what is done at each
stage of monitoring.

A. Solution Architecture

The architecture of the proposed solution is divided into
three parts: monitoring, processing, and notification, as shown
in Fig. 1, the following subsections detail the operation of each
of them, explaining the concept used for the proper functioning
of the solution and the reason for the approach taken.

1) Monitoring: This work aims to monitor an external
information source where requirements related to software
projects developed by the team are made available. Such
an information base follows a similar concept to an online
forum, allowing the addition of texts and attachments, this
set of information added by users is called ”Post”. Each post
corresponds to a customer’s demand for including, removing,
or changing a specific requirement. Demands with different
scopes can be organized into what are called ”workspaces”,
where several posts related to a specific subject are grouped

together to maintain better organization. Thus, when searching
for information in the external source, only those of interest
were defined to obtain specific information.

The idea behind the proposed architecture is to monitor the
pre-defined workspaces’ content while maintaining a constant
interval to keep the database’s requirement information up-
dated and not miss any posted information from the external
source. The defined interval for verification is crucial for
the requirement to be analyzed as soon as possible by the
development team and integrated into the software rapidly,
maintaining a continuous integration flow. On the other hand,
this interval should not be too short to avoid excessive access
to the external source, potentially overwhelming the server. [9]

2) Processing: The search for requirement-related infor-
mation is performed by checking and filtering the listing of
posts present in the workspaces. This process only searches
for information about requirements because even though the
system is organized into different workspaces, it is possible
for a post to be mistakenly inserted along with others related
to requirements. After a more accurate listing of the posts,
they are filtered to be better identified during the notification
process, as depending on their type, different treatments may
be required.

From the already filtered posts, the URL extraction is
performed for each of them. The URL is the electronic address
that will be used to request its contents using extraction
techniques such as Web Scraping.

With the content of each post already available, it is
necessary to structure and index the data so that it can be
easily accessed during the notification process, making use of
some data structure present in the programming language used
for the system’s development.

3) Notification: Once the contents of each post and their
identifiers are obtained, it is possible to verify the database to
identify if a notification related to the post has already been
created. This process uses the identifier (ID) of the post and
scans the database containing all notifications.

Upon identifying that the post has not yet been notified,
another processing step begins, where the previously indexed
data is collected, and a notification is built from this data,
considering each type of post and following an appropriate
treatment routine.

If a post has already been notified before, the found notifica-
tion is analyzed and updated based on the new content found,
preserving the previous content, which helps in the traceability
of the requirement as there will be a history of changes present
in the notification.

The historical record is important for monitoring the life
cycle of the requirement and enabling analysis of its changes
over time, contributing to ensuring quality and efficiency
during software development.

ISSN 2447-8326. V.1 © 2024 BTSYM



2024 Brazilian Technology Symposium

Fig. 1. Monitoring module architecture

Fig. 2. Flowchart of the monitoring operation

B. Requirement monitoring flow

To keep the database updated with the most recent re-
quirements present in the external source, it is necessary to
constantly check for the arrival of a new requirement. To make
this happen efficiently, it was necessary to implement a specific
library for requesting and handling data from the external
source. This library was designed exclusively for this purpose
and includes routines for listing, converting, and organizing
content into simplified structures that can be easily accessed.

In this context, new requirements arise from new posts or

updates that can range from editing the description to include
a new attachment also, the system needs to check if the update
is relevant or not.

The monitoring process starts with the creation of a main
thread responsible for verifying the external source and has
a timeout of thirty minutes, set based on previous tests. This
prevents the system from getting stuck in some part of the
algorithm due to infrastructure problems such as the external
source server crashing or connection issues. However, under
normal conditions, this time limit is never reached, and the
verification is performed correctly. The functioning of the
monitoring process is demonstrated in the flowchart in Fig
2.

Threads allow different parts of a program to run simultane-
ously, sharing resources such as memory and variables. They
are useful for performing multiple tasks at once, improving
performance and efficiency. Threads are the smallest unit of
processing that the operating system can execute indepen-
dently. [11]

The use of threads brings efficient concepts for continuous
improvement and accelerated performance in executing tasks
within the monitoring system, guaranteeing the quality of the
structure of these tasks. Parallelism allows monitoring multiple
tasks simultaneously, making better use of processor resources,
while responsiveness ensures that the system can continue to
operate and respond to new tasks during monitoring. Addi-
tionally, efficiency is increased by reducing waiting time, as
different tasks can be monitored simultaneously, preventing
the system from idling while waiting for a task to complete.
[8]

ISSN 2447-8326. V.1 © 2024 BTSYM



2024 Brazilian Technology Symposium

The mentioned benefits are particularly important in moni-
toring systems, where agility and the ability to handle multiple
tasks are crucial for the efficiency and effectiveness of contin-
uous monitoring.

The thirty-minute time is also used as the interval between
checks of the external source. In the normal case where the
verification thread is terminated before the time limit, the
system waits for the interval to complete, making use of the
sleep routine present in the time library native to Python,
which causes the system to pause execution for a specified
period. [7]

Based on the previously defined workspaces where the
requirements we want to monitor are organized, the last posts
of each workspace are listed. With this first listing, it is already
possible to filter requirements that do not fit certain predefined
criteria and organize posts that contain a specific requirement
that should follow a different treatment during the notification
process.

For each publication present in the obtained lists, a thread
responsible for extracting the information is started, using the
internally developed library. To request the content, the library
makes use of a common technique in the tech industry called
Web Scraping. This method aims to automatically collect
considerable amounts of unstructured data from websites and
then convert it into an easy-to-manipulate format. [5]

During the processing of each post, the collected data is
treated and organized using a common Python structure called
Dict, which is mutable, unordered, and utilizes the concept of
key-value pairs. [10]

The content is divided into keys such as ”author”, ”date”,
”title”, ”description”, and other specific information, so the
values can be easily accessed using the respective key.

The notification process starts with the analysis of each
post’s content. For this, a thread is initiated for each post,
following a specific routine for each filtered and organized
post type. The content verification routine differs for each post
type, where only relevant information for each type is handled
and displayed in the notification.

In the standard notification flow (Fig 3), the system checks
if the post has already been notified in a previous check and
is in the system’s database. Based on this information, the
system decides whether to create a new notification or update
an existing one.

In the process of creating a new notification, the relevant
information from the post, that was indexed during processing,
is read and organized so that it can be presented consistently.
Then, to aid in tracking, the system adds a comment to the
original post, indicating the ID of the generated notification.

On the other hand, when encountering a post that has
already been notified and there is an update, the previous
notification is processed to identify the differences between
the previous and current content and the differing data is
highlighted in notification. At the end of this step, a comment

is added to the post by the system just like it is done after
creating a new notification.

Fig. 3. Flowchart of the analysis thread functionality

III. LESSONS LEARNED

The deployment process and running the system in a pro-
duction environment brought a series of improvements and
challenges.

Centralization of Information: As foreseen during the re-
quirements gathering phase, the decentralization of informa-
tion across teams was a major challenge in implementing the
system. Even though it required additional effort among the
teams to adapt to the new format, establishing a centralized and
standardized database was crucial for the correct functioning
of the software.

Version Control of Requirements: Storing different versions
proved to be a very effective strategy for software requirement
traceability by the teams using the tool. The implemented
approach showed efficiency in managing large-scale projects
prone to frequent changes.

Monitoring: As presented in Section 2, the monitoring
process was primarily built using Python libraries for data
extraction and thread management. While capable of per-
forming constant information verification tasks, this approach
makes the application less scalable and difficult to maintain.
Currently, there are more mature tools specifically designed
to cater to this type of scenario (such as Apache Airflow,
Dagster, and Prefect). Furthermore, in a potential refactoring
of the application, it would be worth assessing the feasibility
of utilizing external tools for these purposes.

Observability: During the design of the system, scenarios
where failures could occur during any of the sub-processes
constituting the monitoring were not considered. Since it is
an application designed to operate automatically without any
human interaction, tracking unwanted behaviors became a
challenging task.

ISSN 2447-8326. V.1 © 2024 BTSYM



2024 Brazilian Technology Symposium

IV. CONCLUSIONS AND SUGGESTIONS

This paper presented the development process of a continu-
ous software requirement monitoring application, highlighting
the main components of its architecture and the lessons learned
during the project and deployment of the tool.

Overall, the developed application met the primary objective
proposed in its conception: to enable automatic monitoring of
changes in software requirements. Among the main positive
impacts of the proposed solution are the versioning of software
requirements managed by the tool’s users and the reduction
of errors caused by human failure. However, it is worth
noting that the main areas for improvement encountered in
the deployment and maintenance process of the developed tool
were related to its architecture. As a suggestion for a possible
refactoring or construction of a new solution with the same
purpose, it is believed that the utilization of specialized tools
in task execution and scheduling can ensure greater robustness
and maintainability to the application.

As a suggestion for future work, with the requirements
history already stored in a database, there is also the possibility
of integration with Artificial Intelligence models to automate
processes that are currently still performed manually by the
team, such as redirecting new requirements based on the
team’s scope and pre-analysis of new requests, in order to
make these processes more efficient.

REFERENCES

[1] Barros, R. A Importância da Gestão de Requisitos para Projetos de
Desenvolvimento de Software. B.S Thesis, Campus São Paulo (IFSP),
Instituto Federal de Educação, Ciência e Tecnologia, São Paulo, Brazil,
2018.

[2] Jayatilleke, S & Lai, R. A systematic review of requirements change
management. Information and Software Technology. pp 163-185. 2018.

[3] Kotonya, G. & Sommerville, I. Requirements engineering: processes and
techniques. Wiley Publishing, 1998.

[4] Machado, F. Gestão de Requisitos de Software: Onde nascem os
sistemas. Editora Érica. 2018.

[5] Mitchell, R. Web Scraping with python Collecting more data from the
modern web. O’Reilly Media. 2018.

[6] Pressman, R. & Maxim, B. Engenharia de software-9. McGraw Hill
Brasil, 2021.

[7] Python Software Foundation. Time: time access and conver-
sions. Available: <https://docs.python.org/3/library/time.html>. Ac-
cessed: 02/07/2024

[8] Silberschatz, A. Galvin, P. B. & Gagne, G. Operating System Concepts.
Wiley Publishing. 2018.

[9] Sommerville, I. Engenharia de Software. Pearson. 2020.
[10] Sturtz, J. Dictionaries in Python, Real Python. Available:

<https://realpython.com/python-dicts/>. Accessed: 02/07/2024.
[11] Pusukuri, K. Gupta, R. & Bhuyan, L. Thread reinforcer: Dynamically

determining number of threads via OS level monitoring. 2011 IEEE
International Symposium on Workload Characterization (IISWC). IEEE,
2011

[12] Umar, M & Lano, K. Automated Requirements Engineering in Agile
Development: A Practitioners Survey. 2023 3rd International Conference
on Electrical, Computer, Communications and Mechatronics Engineer-
ing (ICECCME). IEEE, 2023

ISSN 2447-8326. V.1 © 2024 BTSYM


	Introduction
	Metodology
	Solution Architecture
	Monitoring
	Processing
	Notification

	Requirement monitoring flow

	Lessons Learned
	Conclusions and Suggestions
	References

