2024 Brazilian Technology Symposium

Generative Solutions for Musical Composition

Lucas S. Scocca e Magno T. M. Silva
Electronic Systems Engineering Department
Escola Politénica, University of Sdo Paulo
Sdo Paulo-SP, Brazil
{lucas.scocca, magno.silva} @usp.br

Abstract— This paper addresses the generation of classical
music using generative solutions with machine learning tech-
niques. We propose two different music generators: one based
on a generative adversarial network (GAN) that treats music
as a matrix and another based on natural language processing
(NLP) that seeks to capture temporal dependencies in music by
using a long short-term memory (LSTM) recurrent network.
Preliminary results indicate that NLP-LSTM-based technique
produces qualitatively superior music, showing the potential of
this approach in classical music generation.

Keywords— machine learning; neural networks; generative ad-
versarial network; natural language processing; music-generating
techniques.

I. INTRODUCTION

The growing interest and importance of generative artificial
intelligence (AI) have been evidenced by the proliferation of
tools that explore the autonomous and creative creation of
images and music [[1]]-[5]. In the field of music, the motivation
behind this lies in the perception that good instrumental
music generators can have significant commercial applications,
helping both independent creators and companies to obtain
musical compositions more accessible and in a efficient man-
ner [5][.

Generative adversarial networks (GANSs) [4], [6] and natural
language processing (NLP) [7], [8] techniques have emer-
ged as promising approaches in generating creative content.
GANs with their generator/discriminator model have trans-
formed how we perceive the creation of music and digital
art by enabling the automated production of original and
captivating works [1]. On the other hand, long short-term
memory (LSTM) networks [9], [10], widely used in NLP,
have shown great potential in capturing complex temporal
dependencies, making them suitable for generating coherent
musical sequences.

The literature review covers various music generation ex-
periences with GANs by focusing on the use of musical
instrument digital interface (MIDI) databases for training. An
example is MP3net [[11]], which uses a 2D convolutional GAN
trained with the MAESTRO dataset [|12], generating high-
quality audio through MP3/Vorbis compression techniques.
Another approach is the conditional GAN for electronic music
genres [[13]], which introduces genre ambiguity in rhythmic pat-
tern generation, encouraging musical originality. Additionally,

This work was supported by CAPES under Grant 88887.717846/2022-
00 and Finance Code 001 and by CNPq under Grants 303826/2022-3 and
404081/2023-1.

the LSTM GAN for melodic music generation [14] explores
the unique ability of LSTM to capture long-term correlations
in musical data, yielding results considered pleasant and
coherent in human evaluations. A relevant example of music
generation with NLP can be found in [2]], in which an LSTM
network is used to generate polyphonic music. The proposed
model is trained using a dataset of MIDI files, focusing on
the ability of LSTM to capture temporal dependencies and
generate coherent sequences of notes. The results of [2]] show
that LSTM-based models can successfully generate music that
retains the stylistic elements of the training data. Recently,
a trend towards generative Al with diffusion probabilistic
models (see, e.g., [15] and its references) has been observed.
This is the case of Suno Al (https://www.suno.ai),
which is a digital platform that can generate personalized
music based on text and make music composition simple,
allowing everyone the experience of creating music [5].

In this paper, we propose two classical music generators:
one based on GAN that treats music as a matrix and another
based on NLP-LSTM that seeks to capture temporal depen-
dencies in music. In order to explore the potential of GAN and
NLP-LSTM techniques, musical compositions are treated as a
matrix and in a sequential manner. As dataset, we consider
Johann Sebastian Bach masterpieces for piano. The synthetic
generated musical compositions were classified by a network
trained with three different genres of ‘“real” music: Bach,
Mozart, and music generated by Al The correct classification
of the Bach synthetic musical compositions indicates that our
models can capture somehow the Bach style.

The paper is organized as follows. Section [II| presents the
theoretical foundations of GAN, NLP, and LSTM. Section
describes the methodology used by including the dataset,
data format, preprocessing, and post-processing as well as the
architectures of the proposed generative models. Section
presents the results and discussion by comparing GAN and
NLP-LSTM-based approaches. Section [V| closes the paper
with conclusions and future works.

II. REVISITING MACHINE LEARNING MODELS

In this section, we describe the main foundations of the
machine leaning techniques used in our models. The section
is divided in two subsections dedicated respectively to GAN
and NLP-LSTM.

https://www.suno.ai

2024 Brazilian Technology Symposium

A. GAN

GANs are machine learning models consisting of two com-
peting neural networks: the generator and the discriminator
[4], [6]. The generator creates new samples from noise that
resemble the training dataset, while the discriminator assesses
whether a sample is real (from the dataset) or fake (gene-
rated by the generator). This competitive process, illustrated
in Figure [T} leads to continuous improvement of both mo-
dels, resulting in increasingly realistic data generation [4],
[6]. The cost function that guides this process is given by
ming maxp V(D,G) [4], [6], where

V(D,G) = Epyy(a) [log D(z)]+Ep_(2) [log (1 — D(G(2)))]

represents how well the discriminator D can distinguish real
data = with distribution pgy,(z) from data generated by the
generator G(z), which receives noise with distribution p,(z),
and E[-] represents the mathematical expectation operator.
The discriminator’s goal is to maximize V(D,G), while the
generator’s goal is to minimize it. As shown in [6], the
generator G is optimal when the discriminator D is maximally
confused and cannot distinguish real samples from the fake
ones [4].

/

| Real Data
~ _ Discriminator. R eal/Fake

—

Noise > ry
(] Generator |

A

Fig. 1: Simplified scheme of GAN.

In addition to this GAN model, variants have been proposed
to improve data generation in different contexts. For exam-
ple, the deep convolutional GAN (DCGAN) was developed
from an extensive exploration of convolutional neural network
(CNN) architectures [16], [17]. In DCGAN, deep convolutions
are able to capture spatial features in generated samples, being
widely applied in tasks such as image generation. GANs have
been also implemented with LSTM networks in order to be
effective in capturing temporal dependencies in data series
(see, e.g., [[18]]). These variants demonstrate the flexibility of
GAN:Ss, allowing adaptations for different types of data and
specific applications.

B. NLP-LSTM

NLP is a subfield of AI that focuses on the interaction
between computers and natural human languages [7[], [8[]. The
goal of NLP is to enable machines to understand, interpret, and
generate language naturally for humans [7]. NLP techniques
are widely used in a variety of applications, including machine
translation, sentiment analysis, text generation, and speech
recognition. One of the most important approaches in NLP
is the use of LSTM, described next.

LSTM was proposed to solve the vanishing gradient pro-
blem of classical recurrent neural networks (RNNs) [9], [10].

The idea of this model is to create paths through time that have
derivatives that neither vanish nor explode. They incorporate
memory units and flow control mechanisms that allow them
to preserve important information over long periods of time
and regulate the flow of gradients during training. This enables
them to model long-term dependencies in sequences without
the gradient instability present in classical RNNs. As shown
in Figure 2] a typical LSTM unit consists of a cell state, an
input gate, an output gate, and a forget gate. In the figure,
these components are represented respectively by C;, I;, Oy,
and F;. The cell maintains values over arbitrary time intervals,
and the three gates control the flow of information into and
out of the cell. The forget gates determine which information
should be discarded from the previous state, assigning a value
between 0 and 1 to the previous state compared to a current
input. A value of 1 means preserving the information, while a
value of 0 means discarding it. The input gates decide which
parts of the new information should be stored in the current
state, using a system similar to that of the forget gates. The
output gates control which parts of the information in the cur-
rent state should be produced, assigning values between 0 and
1 to the information, considering both the previous and current
states. The selective production of relevant information from
the current state allows the LSTM network to maintain useful
long-term dependencies to make predictions in both current
and future time steps. LSTM networks are generally composed
of multiple cells like the one in Figure [2] connected together.
The literature contains some variants of LSTM, as is the case
of bidirectional LSTM (BiLSTM) [[19]. A BiLSTM consists
of two LSTMs: one that takes the input in a forward direction,
and the another in a backward direction. This effectively
increase the amount of information available to the network,
improving the context available to the model. The ability of
LSTM (or BiLSTM) of capturing long-term dependencies in
data sequences is fundamental for tasks developed by NLP as
language modeling, for example.

Memory cell Y
internal state (:)
C

-1

Input anT' Output
node T

Forget
gate gale qate T
’Iﬂllal'ltanhl"flal
Hidd tat
dpn sae] J b U w
N If J
Input X,

Fig. 2: Scheme of a typical LSTM network unit [20].

III. METHODOLOGY

In this section, the methodology used in this paper is
detailed by including the dataset, data format, preprocessing,
and post-processing as well as the proposed generative models.

A. Dataset and data format

To build the dataset, we use 25 piano scores of mu-
sical masterpieces by Johann Sebastian Bach in .Mu-
sicXML format, available at http://www.mscorelib.

http://www.mscorelib.com/actree/Bach/

2024 Brazilian Technology Symposium

com/actree/Bach/l To increase the dataset, each song
was transposed (key change) with 12 semitones above and 12
semitones below, which leads to a dataset with 625 examples.

We use a simplified matrix representation for a music based
on note structs. It offers a structured approach to capturing
essential musical features, such as frequency, start time, dura-
tion, and instrument. This representation is based on the .Mu-
sicXML format, which facilitates conversion between formats
and mathematical manipulation of notes. Table [I] presents a
relationship between note names, notes in the simplified matrix
representation format, and their actual frequencies in hertz.
The simplified matrix format is used as input and output for
the GAN and is exemplified in Figure [3]

This note representation is simpler than stating the fre-
quency of the note itself, since in music theory notes are
separated by semitones. Thus, a semitone differenceE] is equal
to one in the representation for notes used. The mathematical
relationship between two notes a semitone apart is 1/ /2.
Thus, if in the proposed format a note has the number assigned
to the frequency of z, the relationship 75 would be 1 /N2
if we considered the real frequency. So, x + 12 have twice the
frequency of x, which is consistent with the idea of an octave,
since a note one octave higher (or 12 semitones higher) has
the same name, and has twice the frequency.

TABLE I: Relationship between note names, notes in the simplified
matrix representation format (NS), and their actual frequencies (f) in
hertz.

Note C C# D D# E F
NS 2 3 4 5 16 7
f(Hz) | 1635 | 1732 | 1835 | 19.45 | 20.60 | 21.83
Note F# G G# A A B
NS I8 19 20 21 22 23
f(Hz) | 23.12 | 2450 | 2596 | 2750 | 29.14 | 30.87
Note C C# D D# E F
NS 24 25 26 27 28 29
T(Hz) | 32.70 | 34.65 | 36.71 | 38.80 | 41.20 | 43.65
Note F# G G# A AH B
NS 30 31 32 33 34 35
f(Hz) | 46.25 | 49.00 | 51.91 | 55.00 | 58.27 | 61.74

60 36 00 0 000

60 3600 0 00 0

60 36 000 00 0

60 36 P20 00 0

5143000000

5143000000

51430000060

51430000060

e 41000000

Se 41000000

Fig. 3: Example of a Bach piece represented in the simplified matrix
format.

In this format, each row represents the minimum time ins-
tance. Different notes played simultaneously are represented
in the same row in different columns. The format supports up

A semitone difference is the “smallest unit” of frequency in an instrument,
like the difference of a fret on a guitar neck.

to eight notes played simultaneously and zero indicates that
no note is being played. A row with only zeros indicates a
pause. If two notes in the same column in consecutive rows
are the same, it means that the note has a longer duration.
If the same note is played repeatedly, it must be expressed
in a different column in the following row, since a repeated
note in the same column would result in a longer duration
rather than the note played again. The example of Figure [3]
follows the pattern from Table Il In this example, there are six
columns containing only zeros, which indicates that only two
notes are played simultaneously. The four first rows are equal
to 60 36 0 0 0 0 0 0, which indicates that notes 60 and 36
played simultaneously has duration four times longer than the
minimum. Note 60 has frequency 46.25 x 239/12 = 261.63 Hz
and note 36 has frequency 32.70 x 2 = 65.40 Hz and both
represent note C. Figure [] shows a scheme of how the music
files are converted and manipulated.

I S 5
.k fe— 1+ | ﬁ
)
-MusicXML file Readable sheet music Sound in .mp3/.wav

Music composition software
(Finalle/MuseScore)

[111] > [1
Matrix format N fSoirr:\npgitﬁed e
Partin C++

Machine Learning

Part in Python
Fig. 4: Scheme of how the music files are converted and manipulated.

The same format and database are used in the NLP-LSTM
approach. In this case, each row is treated as a token with the
purpose of predicting the next set of notes in the sequence.

B. Data pre-processing and post-processing for GAN

Besides the aforementioned simplified matrix, no other
pre-processing is done to generate music with GAN. In the
post-processing, the matrices obtained at the output of the
GAN are converted to integers (we use the Python function
astype (int)). Arbitrarily, values less than or equal to 5
are approximated to 0. We should notice that the lowest notes
in the music with a 12-semitone downward transpositionf]
have values considerably greater than 5. Therefore, low values
occur when the GAN tries to generate something intermediate
between a pause and a note. An example of a generated music
segment before (left) and after (right) post-processing can be
seen in Figure [3

2This means the notes with the lowest number in the matrix representation
minus 12.

http://www.mscorelib.com/actree/Bach/

2024 Brazilian Technology Symposium

52 3900080 -1 -1 52 30000000
52 25010 -1-109 52 25 000000
590 3400 1-20 -1 50 34 900000

55 29 900080 -1 55 29900 0080

Fig. 5: Example of a generated music segment before (left) and after
(right) post-processing in the simplified matrix format.

Furthermore, a post-processing to correct out-of-pitch of
notes of the generated songs is taken into account, as explained
next. We start by counting the number of each note. For
example, suppose that a song contains 120 C, 111 C #, 100
D, and 90 G. Then, the total number is compared with all
major scales, and the percentage of notes outside and inside
the key is computed. Let us consider the C major scale, which
normally has the notes C, D, E, F, G, A, and B, with no sharp
or flat. In the example, we have 120 4 100 4+ 90 = 310 notes
within the key of C major and 111 notes outside the key of C.
The scale that covers the most notes in the song is determined
as the tonal scale of the song. Then, all notes outside the
song’s scale are corrected to the closest note within the song’s
scale. This post-processing makes the songs more pleasant to
listen to.

C. Data pre-processing and post-processing for NLP-LSTM

Tokenization involves inserting a character, the letter ’a’ in
this case, between the spaces in the rows. For example, the
TOWS

58 53 49
81 67 64
41 27 0 0 0 0 0O

00000
00000

become

58a53a49a0alalalal
8la67a64a0a0alalal
41a27a0a0a0a0a0al

after the tokenization. The tokens are mapped using embed-
ding vectors, so that the network can perceive the vector
distance between words.

In the post-processing, the reverse process is performed by
replacing ’a’ characters with a space. Thus, the sequence of
tokens is transformed into the simplified matrix format. Fi-
nally, the simplified matrix format is converted to .MusicXML
format, which can be converted to .MIDI or .mp4 by various
composition softwares.

The post-processing that corrects out-of-pitch notes used in
songs generated with GAN was not used for songs generated
with the NLP-LSTM model as they were all already within
the song’s key, indicating that the model used for generating
music with NLP can better perceive which notes are in tune
and out of tune.

D. Model architectures

We propose two GAN (G1 and G2) and one NLP-LSTM
models for generating music. Model G1 is a conventional
GAN with multilayer perceptron (MLP) networks [16] for
both the generator and the discriminator, whose architecture

is specified in Tables [[I] and [[TI] For the sake of compactness,
in all tables presented in this section we use N for the number
of filters or neurons per layer, P for pooling, D for dropout,
LReLU(¢) for Leaky ReLU with parameter ¢, and tanh for
hyperbolic tangent.

Model G2 is a DCGAN with the hyperparameters shown in
Tables [Vl and

TABLE II: Model G1 — Parameters for MLP-GAN discriminator.

Layer N Type D Activation
1 (in) | 28 | Dense | 0.3 | LReLU(0.2)
2 27 | Dense | 0.3 | LReLU(0.2)
3 27 | Dense | 0.3 | LReLU(0.2)

4 (out) 1 Dense - Sigmoid

TABLE III: Model G1 — Parameters for MLP-GAN generator.

Layer N Type Activation
1 (in) 27 Dense | LReLU(0.2)

2 28 | Dense | LReLU(0.2)
3 (out) | 2T° | Dense tanh

TABLE IV: Model G2 — Parameters of the DCGAN discriminator.

Layer N Type P Stride D Activation
1 (in) 16 | Conv2D | (5,5) (2,2) 0.3 | LReLU(0.3)
2 32 | Conv2D | (5.5) (2,2) 0.3 | LReLU(0.3)
2 64 | Conv2D | (5,5) (2,2) 0.3 | LReLU(0.3)

4 (out) 1 Dense - - - Sigmoid

TABLE V: Model G2 — Parameters of the DCGAN generator.

Layer N Type P S Activation
1(Gn) | 211 Dense — — LReLU(0.3)
2 26 Conv2DTranspose | (5,5) | (2,2) | LReLU(0.3)
2 25 Conv2DTranspose | (5,5) | (2,2) | LReLU(0.3)
4 21 Conv2DTranspose | (5,5) | (2,2) | LReLU(0.3)

5 (out) 1 Conv2DTranspose | (5,5) | (1,1) tanh

For music generation with NLP-LSTM, the hyperparame-
ters includes an embedding layer with a dimension of 100,
a BiLSTM layer with a dimension of 1000, and a dense
layer with softmax activation. During the generation of new
music, a logic was implemented to randomly select the top
model predictions to introduce variability in the generated

compositions.
All models were trained using the cross-entropy loss func-
tion and the Adam optimizer with parameters 5, = 0.9,

By = 0.999, € = 1077, and batch size of 25 [16], [21]]. The
learning rate was set as) = 2 x 10~* for Model G1, n = 10~*
for Model G2, and 17 = 10~2 for LSTM-NLP. The samples of
music of the training dataset were adjusted to have the same
duration. Shorter pieces were padded with rows of zeros at the
end, which does not affect how the model interprets the first
rows of the music. Each training sample consists in a song of
the dataset, which is converted to a matrix of 4096 x 8 with
the format of Figure [3] This matrix is considered as input for
the discriminator of DCGAN (Model G2), it is transformed to
a vector for the discriminator of MLP-GAN (Model G1), and
tokenized for the LSTM-NLP. We used 500 out of 625 songs of

2024 Brazilian Technology Symposium

the dataset for training. Furthermore, noise of dimension 100
is considered as the input of G1 and G2 generators, whose
output has the same dimension of each training sample, i.e.,
4096 x 8.

IV. RESULTS AND DISCUSSION

In this section, we present the results for three songs gene-
rated, named Music A, B, and C. These and other generated
songs can be heard in a repository, available at https:
//sites.google.com/usp.br/sitedolucas/\

The MLP-GAN of Model G1 was trained during 500 epochs
to generate Music A. Figure [§] shows the generator and the
discriminator loss curves along the epochs for this case. We
observe that these curves do not cross, which means that the
discriminator and generator did not work one against the other
as expected.

1.4 —— Loss of D
Loss of G

124

1.04

Loss

0.8

0.6

0.4+ i T i T
o] 100 200 300 400 500
Epochs

Fig. 6: The generator (G) and the discriminator (D) loss curves
along the epochs for Model G1 that generated Music A.

The pattern of Bach’s songs was more noticeable in Mu-
sic B, generated with DCGAN of Model G2 which was
trained during 400 epochs. Figure [7] shows the generator and
the discriminator loss curves along the epochs for this case.
Different from Figure [6] here we can observe that the loss
curves intersect each other which means that the discriminator
and generator do work one against the other as expected in
a GAN. Indeed, Music B presents a more pleasant sound to
listen to in comparison with Music A.

Music C was generated with NLP-LSTM, trained per 150
epochs. During the generation of this song, a logic was
implemented to randomly select the top model predictions
to introduce variability in the generated compositions. To
measure the performance of this model, the accuracy curve
was measured along the epochs and is shown in Figure [§
This metric in the context of an NLP token generation model
reflects the proportion of correct predictions made by the
model during training. Specifically, during each epoch, the
model attempts to predict the next token in a sequence based
on the preceding tokens. The accuracy is calculated by com-
paring the predicted token with the actual token in the training
data. As the model iteratively adjusts its weights through
the backpropagation algorithm, the predictions become more
accurate, which is reflected in an increasing accuracy score

—— Loss of D
Loss of G
2.54

2.04

Loss
-
2
—_—
=
| —

1.0

0.5 4

0 50 100 150 200 250 1300 350 400
Epochs

Fig. 7: The generator (G) and the discriminator (D) loss curves
along the epochs for Model G2 that generated Music B.

over the epochs. The use of the accuracy metric is particularly
relevant for this task because it provides a quantifiable measure
of how well the model is learning to predict the next token in
a sequence. The upward trend in the accuracy graph indicates
that the model is improving its ability to generate sequences
that closely resemble the patterns in the training data, which is
a sign of the model is generating coherent and realistic music
sequences. This behavior can be observed in Figure [8] since
the accuracy of the proposed NLP-LSTM model achieves one
after 120 epochs, which indicates that Music C is coherent.
Comparing this song with those generated with the proposed
GAN models, we can observe that it is it presents a more
pleasant sound to listen to.

1.04

0.8

e
=]
|

Accuracy

=]
=
1

0.2

0 20 40 60 80 100 120 140
Epochs

Fig. 8: Accuracy graph of the NLP model over the epochs.

In addition to the subjective evaluation, a discriminator
was also carried out to check whether the generated songs
actually resembled Bach’s to a certain extent. This discri-
minator is an MLP network, whose parameters are shown
in Table [VI It was trained to classify three different styles
of music: Bach, Mozart, and songs generated by Al in a
deterministic way. In the dataset, we consider 125 out of
625 songs of the aforementioned Bach dataset that were not

https://sites.google.com/usp.br/sitedolucas/
https://sites.google.com/usp.br/sitedolucas/

2024 Brazilian Technology Symposium

used for generating Music A, B, and C. The dataset was also
formed by 125 musical masterpieces of Mozart, available at
http://www.mscorelib.com/actree/Mozart/ and
125 songs generated by Al from the YACY software, available
at https://www.youtube.com/@yacyai. 80% of the
dataset was used for the training and 20% for the test of the
discriminator.

TABLE VI: Parameters of the MLP discriminator used to
evaluate the generates songs.

Layer N Type | Activation
1 (in) 512 | Dense ReLU
2 256 | Dense ReLU
3 (out) 3 Dense Softmax

The trained discriminator achieved an accuracy equal to one
when tested with Music A, B, and C. However, the output
of the softmax function of the discriminator achieved values
closer to 1 or 0 for Music C, when compared to Music A or
B. This confirms that Music C, generated with NLP-LSTM, is
closer to Bach’s style than Music A and Music B, generated
with GAN.

The training was done using a T4 GPU as a hardware
accelerator. The training time for Music A was 79.33 seconds,
for Music B, 757.55 seconds, and for Music C, 486.78
seconds. Since our preliminary results indicate that Music C
is better than B and the latter is better than A, NLP-LSTM
seems to be a suitable model for music generator than those
based on GAN.

V. CONCLUSIONS

In this paper, we proposed three generative models for
generate music. Different from the most of the solutions in
the literature, we used a simplified matrix representation for
music, based on notes and structs. The generated songs were
evaluated with a discriminator that confirms what could be
observed subjectively: the music generated with NLP-LSTM
is more closely resembled real music style when compared to
those generated with GAN models. In future works, we intend
to compare our models to solutions proposed in the literature
in terms of mean opinion score.

REFERENCES

[1] S. Shahriar, “GAN computers generate arts? A survey on visual arts,
music, and literary text generation using generative adversarial network,”
Displays, vol. 73, pp. 102237, 2022.

[2] J.-P. Briot, “From artificial neural networks to deep learning for music
generation: history, concepts and trends,” Neural Comput. Appl., vol.
33, no. 1, pp. 39-65, jan 2021.

[3] H. Zhang, L. Xie, and K. Qi, “Implement music generation with
GAN: A systematic review,” in International Conference on Computer
Engineering and Application (ICCEA), 2021, pp. 352-355.

[4] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” I[EEE
Signal Processing Magazine, vol. 35, pp. 53-65, 2018.

[5] J. Yu, S. Wu, G. Lu, Z. Li, and K. Zhang, “Suno: potential, prospects,
and trends,” Frontiers of Information Technology & Electronic Engine-
ering, vol. 25, pp. 1025-1030, 2024.

[6] 1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
in Proc. Advances Neural Information Processing Systems Conference,
2014, pp. 2672-2680.

[7]
[8]
[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]
[20]

[21]

C. D. Manning and H. Schiitze, Foundations of statistical natural
language processing, MIT Press, 1999.

K. R. Chowdhary, Natural Language Processing, pp. 603—649, Springer
India, New Delhi, 2020.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
A. Graves, Long Short-Term Memory, pp. 37-45, Springer Berlin

Heidelberg, Berlin, Heidelberg, 2012.

K. Van Den Broek, “MP3net: coherent, minute-long music generation
from raw audio with a simple convolutional GAN,” arXiv, available at
https://arxiv.org/abs/2101.04785, 2021.

C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.Z. A. Huang,
S. Dieleman, E. Elsen, J. Engel, and D. Eck, “Enabling factorized piano
music modeling and generation with the MAESTRO dataset,” in Proc.
of International Conference on Learning Representations, 2019, [dataset
available at https://magenta.tensorflow.org/datasets/
maestrol.

N. Tokui, “Can GAN originate new electronic dance music genres?
— generating novel rhythm patterns using GAN with genre ambi-
guity loss,” arXiv, available at https://arxiv.org/abs/2011.
13062, 2020.

G. Li, S. Ding, and Y. Li, “Novel LSTM-GAN based music generation,”
in Proc. of 13th International Conference on Wireless Communications
and Signal Processing (WCSP), 2021, pp. 1-6.

Z. Chang, G. A. Koulieris, and H. P. H. Shum, “On the design
fundamentals of diffusion models: A survey,” arXiv, available at
https://arxiv.org/abs/2306.04542, 2023.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT Press,
2016.

A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2016.
H. Sun, F. Zhang, and Y. Zhang, “An LSTM and GAN based ECG ab-
normal signal generator,” in Proc. of Advances in Artificial Intelligence
and Applied Cognitive Computing, Hamid R. Arabnia, Ken Ferens,
David de la Fuente, Elena B. Kozerenko, José Angel Olivas Varela,
and Fernando G. Tinetti, Eds., Cham, 2021, pp. 743-755, Springer
International Publishing.

A. Sherstinsky, ‘“Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network,” vol. 404.
A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola,
Learning, Cambridge University Press, 2023.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, http://arxiv.org/abs/1412.6980, 2014.

Dive into Deep

http://www.mscorelib.com/actree/Mozart/
https://www.youtube.com/@yacyai
https://arxiv.org/abs/2101.04785
https://magenta.tensorflow.org/datasets/maestro
https://magenta.tensorflow.org/datasets/maestro
https://arxiv.org/abs/2011.13062
https://arxiv.org/abs/2011.13062
https://arxiv.org/abs/2306.04542
http://arxiv.org/abs/1412.6980

	Introduction
	Revisiting machine learning models
	GAN
	NLP-LSTM

	Methodology
	Dataset and data format
	Data pre-processing and post-processing for GAN
	Data pre-processing and post-processing for NLP-LSTM
	Model architectures

	Results and Discussion
	Conclusions
	References

