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Abstract. In this paper, a design method applied to a hydraulic actu-
ator is proposed. The method comprises a feedback linearization-based
controller with friction compensation and estimation of the inversion
term. Although very effective and with strong stability guarantees, feed-
back linearization control depends on parameters that are difficult to
determine, requiring large amounts of experimental effort to be identi-
fied accurately. On the other hand, neural networks require little effort
regarding the parameter identification of the control hardware. Offline-
trained multi-layer perceptron and wavelet neural networks are applied
in the present work, simplifying the controller in comparison with other
similar online strategies. Lyapunov-based analysis is applied to obtain
the formal stability proof of this strategy. The effectiveness of the pro-
posed method is verified by means of simulation and experimental results
where low and high disturbances in the load are considered. The results
confirm that the method is effective in the absence of a high disturbance
in the load.

Keywords: Hydraulic control · Neural networks · Multi-layer percep-
tron · Wavelet networks

1 Introduction

Hydraulic actuators are widely applied in industrial tasks that combine high
forces with reduced dimensions. Despite such benefits, they have some important
drawbacks when high precision is required in their dynamic responses. Strong
nonlinearities present in the dynamic model of the hydraulic actuators, such
as the friction force in the piston and the hydraulic valve response [1], turn a
controller design that can drive a precise response against such characteristics
into a challenging task. Control strategies that use nonlinear model-based con-
trollers combined with online learning algorithms have been proposed in more



recent works to overcome the nonlinearities and parametric uncertainties of the
model. The backstepping strategy has been applied in conjunction with the
Extended Disturbance Observer (EDO) [2], Extended Differentiator [3], and Ex-
tended State Observer (ESO) [4]. Sliding mode control is applied in [5–7] and
feedback linearization-based controllers in [8–10]. We can observe in such works
a reduced position error in comparison with the traditional PID controllers and
a convergence of the uncertain parameters present in the model by the use of
adaptive techniques based on Lyapunov methods that aim to obtain stability in
the closed loop system. Despite such satisfactory results, they also have impor-
tant drawbacks for practical applications. In the mentioned strategies, a large
number of control parameters must be tuned, where a compromise between the
robustness of the controller, the computing capabilities of the available control
hardware, and the convergence speed of the estimation procedure must take into
account, which turns the tuning process rather difficult and sometimes demand
sophisticated hardwares. Moreover, the sensor noise is critical for the conver-
gence performance in online strategies and may require expensive devices for a
satisfatory result.

In the present work, we propose a control scheme applied to a hydraulic po-
sitioning system, introduced in [11], where two control loops, based on the main
phenomena involved in the system are designed: the outer loop encompasses
the mechanical variables, whereas the inner loop uses a feedback linearization
strategy, which aims at compensating for the nonlinearities due to the hydraulic
dynamics. In the outer loop, we use a static neural network to compensate for
the nonlinear effect of the friction forces in the piston. In the inner loop, we
use a neural network to compute the inversion term required in the feedback
linearization strategy. Two different classes of neural networks are proposed to
be applied in the static neural network that compounds the proposed controller:
Multi-layer perceptron, which was successfully applied in [11], and wavelet neural
networks. According to [12], wavelet neural networks are a class of RBF neural
networks that have important advantages when compared with the traditional
RBF and feedforward multi-layer perceptron neural networks, such as a better
generalization capability for networks with reduced input dimension, a linear
relation between the hidden and output layers and an analytical methodology
for the initialization of the parameters in the core of hidden layer. In the present
work, the neural network´s parameters are acquired by extensive offline train-
ing. The offline training procedure reduces significantly the computing efforts
involved in the control strategy, thus requiring control hardwares simpler than
those applied for fully online-trained controllers. The efectiveness of the pro-
posed strategy is demonstrated both analitically, with a rigorous stability proof
using Lyapunov’s Second Method, and with comprehensive simulation and ex-
perimental results. The results obtained with multi-layer perceptron and wavelet
neural networks are compared. Finally, the better configuration is applied in a
experimental plant. Despite the good results obtained in [11] with respect to the
same strategy, in such previous work an analisis of the load disturbance effects
was not performed. Moreover, in the present work we propose the compensation



of the friction force in the piston and present the statibity formal proof consid-
ering such control action. The use of RBF networks is usual in several papers in
hydraulic control. In the present work we use the powerfull wavelet networks as
an alternative to MLP networks.

The remainder of this paper is structured as follows. In Section 2, the hy-
draulic actuator model is discussed. In Section 3, we present the overall control
strategy, whereas Sections 4, 5, and 6 are dedicated to the development of the
proposed neural networks. In Section 7, the stability proof is detailed, while,
in Section 8, the proposed method is evaluated by means of simulation and
experimental results. Finally, the main conclusions are outlined in Section 9.

2 System Model

We may observe by means of Figure 1 the hydraulic actuator applied in the
present work, composed of a differential cylinder that is attached to a load. The
parameters illustrated in Figure 1 are described in Table 1 and along the present
section. Figure 2 represents the experimental setup.

Fig. 1. Schematic description of the hydraulic actuator.

According to Newton’s Second Law and flow-continuity considerations, as
described in detail in [1], the equations representing the system dynamics are:

Mÿ + FA = FH − FD (1)

ṗ1 =
β

v1 +A1y
(Q1 −A1ẏ) (2)

ṗ2 = − β

v2 −A2y
(Q2 −A2ẏ) (3)



Table 1. System parameters.

Parameter description Value

v1 Chamber volume 1 1.2446× 10−4m3

v2 Chamber volume 2 9.9060× 10−5m3

Kv1;Kv2 Volumetric flow rates gains
√
2 · 15.11× 10−9m3/(s×

√
Pa)

l1 Pressure loss 1 5.68× 1010Q1Pa
l2 Pressure loss 2 4.35× 1010Q2Pa
l3 Pressure loss 3 3.59× 1010Q1Pa
l4 Pressure loss 4 3.59× 1010Q2Pa
M Load mass 14.54kg
A1 Chamber area 1 4.91× 10−4m2

A2 Chamber area 2 2.37× 10−4m2

β Bulk modulus 1.0× 109N/m2

Ps Supply pressure 50× 105Pa
P0 Reference pressure 0Pa

Fig. 2. Experimental setup.



y, ẏ and ÿ are the position, velocity, and acceleration of the piston-load
assembly, respectively. p1 and p2 are the pressure chambers. Q1 and Q2 are the
volumetric flow rates. FH = p1A1 − p2A2 is the hydraulic force applied to the
piston. β is the bulk modulus. FD represents a generic disturbance force.

The volumetric flow rates through the valve orifices are functions of the
pressures in the chambers and the input signal applied to the valve, expressed
by:

Q1 = Kv1ug1, g1 =

{√
ps − (p1 + l1), u ≥ 0

√
p1 − l3, u < 0

Q2 = Kv2ug2, g2 =

{√
p2 − l4, u ≥ 0√
ps − (p2 + l2), u < 0

(4)

Kv1 and Kv2 are the flow rate gains that characterize each orifice of the
valve, whereas l1...l4 are the pressure losses caused by the hydraulic line couplers,
which are significant and must be taken into account when high-precision tasks
are considered.

Equations 1-4 form an open-loop model of the system. The values of its
parameters are given in Table 1. The experimental effort to acquire the model
parameters is described in detail in [13].

3 Proposed Controller

Feedback linearization is the control strategy applied in the present work. The
system model can be written in the so-called control/input affine form, i.e.:

x(n) = f(x) + b(x)u (5)

where u is a scalar control input, x is the scalar output of interest, x = [x, ẋ, ..., xn−1]
is the state vector, and f(x) and b(x) ̸= 0 are nonlinear state functions. If f(x)
and b(x) are known, defining v(x) as a linear term matching the desired dynam-
ics for the closed-loop system, it is straightforward that the input

u = b−1(x)[v(x)− f(x)] (6)

leads the controlled nonlinear system to perform as a linear one that presents
the desired dynamic behavior, i.e.:

x(n) = v(x) (7)

Considering the error between the estimated model and the system, the
closed-loop dynamics can be written as

x(n) = v(x) + ϵ (8)

where ϵ is the residue from imperfect cancellations.
The controller that we apply in the present work is based on interpreting the

actuator as two interconnected subsystems:



– In the mechanical subsystem (outer loop), it is computed a first control law
that represents a desired hydraulic force that leads the piston to track its
position trajectory;

– In the hydraulic subsystem (inner loop), it is developed a second control
law, which leads to tracking the desired hydraulic force value as closely as
possible.

The control law applied to the mechanical subsystem is based on [14]. It is
composed of a reference acceleration ÿr and an auxiliary error measure z, defined
as follows:

ÿr = ẏd − λỹ (9)

z = ˙̃y + λỹ (10)

where yd is the desired piston position, ỹ = y− yd is the position tracking error,
and λ is a positive gain. All terms marked with one or two dots are the first or
second time derivatives of the corresponding variables, respectively.

The desired force FHd is the output of the mechanical subsystem. The control
law applied in the mechanical subsystem is given by:

FHd =Mÿr −Kdz + ϕ(ẏ, p1, p2) (11)

where we use a static neural network Φ(ẏ, p1, p2) to compensate for the friction
force FA presented in Equation 1. Kd is a positive gain.

In the hydraulic subsystem, we use feedback linearization control. When all
the terms are written in the form of Equation 5, one proceeds as follows. First,
define x = [y, ẏ, FH ]T and the auxiliary terms f1 and f2 as:

f1 =
β

v1 +A1y
, f2 =

β

v2 −A2y
(12)

and replacing Q1, Q2, f1, and f2 in Equations 2 and 3 with their corresponding
terms given in Equations 4 and 12. The dynamic for this subsystem is given by:

ḞH = −
(
A2

1f1 + a22f2
)
ẏ + (A1f1Kv1g1 +A2f2Kv2g2)u (13)

Since the objective is to cancel its nonlinear effects and generate the desired
force FHd, the proposed control law is:

u = Ω (y, ẏ, p1, p2)
[
ḞHd −KpF̃H +

(
A2

1 +A2
2f2
)
ẏ
]

(14)

where ḞHd is the time derivative of the desired hydraulic force, F̃H = FH −FHd,
and Kp is a positive feedback gain. We represented the term b−1(x) in Equation
6 by a static neural network Ω (y, ẏ, p1, p2).



4 Wavelet Neural Network

A wavelet family is a set of functions generated by means of the translation and
dilatation of a mother wavelet ψ. The structure of the WNN used in the present
work is similar to that applied in [12] and [15]. The network output, considering
only one output, is given by the following expression:

y = W1Ψ(A,B,x) + bw +W2x (15)

where W1 is the weighting vector that connects the hidden layer to the output
layer, bw is the bias associated with the output layer, W2 is the weighting vector
that connects the input vector x to the output layer, and Ψ(A,B,x) is the
wavelons vector, computed according to the input vector x and the matrices of
dilatations and translation A and B.

If we worked with aWNN where the number of wavelons ism, i.e., the number
of hidden nodes, and the number of inputs is p, the expression in Equation 15
can be written as:

y =

m∑
i=1

w1iΨi(Ai, Bi,x) + bw +

p∑
g=1

w2gxg (16)

where:

Ψi(Ai, Bi,x) =

p∏
j=1

ψ(zi,j) (17)

being that ψ is the mother wavelet chosen for the WNN. The scalar zi,j is given
by:

zi,j =
xj −Bi,j

Ai,j
(18)

Following [12], the Mexican Hat is the mother wavelet adopted in the present
work. It is given by:

ψ(zi,j) =
(
1− z2i,j

)
e−

1
2 z

2
i,j (19)

5 Feedforward Multi-Layer Perceptron

The feedforward multi-layer perceptron (MLP) neural network is the most com-
mon approach for neural networks [16–18]. A matrixial representation is:

o = Γ [WnΓ [Wn−1...Γ [W1u+ b1] + ...+ bn−1] + bn] (20)

where Wn is the weighting matrix of the n-th layer, bn is the bias vector asso-
ciated with each layer node, and Γ (x) = [γ1(x,γ2(x), ...,γn(x)] is a nonlinear
operator where each γn(.) is a monotonic and continuously differentiable activa-
tion function. In the present work, the sigmoidal logistic function is used.



6 Neural Network Training and Validation

The cross-validation method [19] is applied in the static neural networks training.
The acquisition process of the training and validation sets is performed offline.
With the purpose of acquiring representative sets, we use a simple proportional
controller to lead the system to track the desired position trajectory described
in Equation 21 and perform the measures of the pressure and position responses
of the plant, applying such values in the training sets, as illustrated in Figure 3.

yd = 0.1 +A sin (ωt) (21)

where Ais the amplitude and ω is the angular frequency. The amplitude is kept
at a fixed value of 0.08 m.

In the proposed profile, the piston is moved by means of a set of sinusoidal
trajectories where five different frequencies from 0.25 rad/s to 1 rad/s are applied
in the training set and two different frequencies of 0.81 rad/s and 0.93 rad/s in
the validation set. Such a procedure aims to ensure a smooth transition for the
piston.

The Quickprop algorithm [20] is applied in the training process.

Fig. 3. Static neural networks: training and validation set generation.

7 Stability Analysis

For the stability analysis, the Lyapunov method was applied. The following
assumptions are considered:



– The mechanical subsystem parameters are known, except for the friction
force in the piston. The hydraulic subsystem parameters are subject to un-
certainties.

– The desired piston position yd(t) and its time derivatives up to 3rd order are
continuous bounded functions.

– The cancellation residue ϵ in 8 is rewritten in terms of a percentage error
term δ, where we assume that −1 < δ ≤ δ̄. Whether the NN reproduces
exactly the function b−1, then δ = 0.

– The error in the cancelation of the friction force by the NN is bounded and
it is represented by ϕ.

Based on such assumptions, we can write 14 as:

u = Ω (y, ẏ, p1, p2) [v + f ] + ϵ = b−1
[
ḞHd −KpF̃H + f

]
(1 + δ) (22)

Considering the open-loop model of the system, given by Equations 1 and
13, and the proposed control structure, represented by Equations 11 and 22,
substituting each proposed control law into the dynamics of its corresponding
subsystem (11 into 1 and 22 into 13), the behavior of the closed-loop system can
be described in terms of the following expressions:

Mż = −Kdz + F̃H + FD + ϕ (23)

˙̃F = −KpF̃ + δ
[
ḞHd −KpF̃H + f

]
(24)

Considering these expressions, the stability properties of the closed-loop sys-
tem are proven as follows. Defining the trajectory tracking errors of the system

in terms of the auxiliary vector ρ =
[
ỹ ˙̃y F̃H

]T
and considering the closed-loop

system dynamics described by Equations 23 and 24 subject to an unmodeled
disturbance force FD, upper-bounded by F̄D and considering the model of the
system subject to uncertainties whose combined effect can be represented as a
percentage factor δ with an upper bound δ̄ and an error ϕ with an upper-bounded
ϕ̄, the following affirmation is true:

Given an arbitrary initial condition, the controller gains can be chosen so
as to ensure that the trajectory-tracking error vector ρ converges to a limited
residual set R as t → ∞. The amplitude of such a set depends on ϕ̄, F̄D, δ̄,
and the controller’s gains. Moreover, if FD = 0 and the output of the wavelet
networks used in the hydraulic and mechanical subsystems control law cancels
uncertainty effects, then ∥ρ∥ as t→ ∞.

Consider the Lyapunov candidate function:

V =
1

2

(
HMz2 + P ỹ2 + F̃ 2

H

)
(25)

where P and H are positive constants. By taking the time derivative of 25,
substituting into it the expressions 23 and 24, and considering P = 2λKdH we
obtain:



V̇ = −
(
ρT
(
Ṅ2

)
ρ+ ρT∆

)
(26)

N2 =

 λ2HKd 0 − 1
2Hλ− δα1

2

0 HKd − 1
2H − δα2

2

− 1
2Hλ− δα1

2 − 1
2H − δα2

2 Kp − δα3

 (27)

∆ =

λH (FD + ϕ)
H (FD + ϕ)

Ψdδ

 (28)

α1, α2, α3, and Ψd are the following bounded auxiliary terms:

α1 =

(
(Mλ+Kd)

λKd

M

)
(29)

α2 =

(
(Mλ+Kd)

(
λ+

Kd

M

)
− λKd +

(
A2

1f1 +A2
2f2
))

(30)

α3 =

(
−Kd

1

M
− (λ+Kp)

)
(31)

Ψd =M
...
y d +

(
A2

1f1 + a22f2
)
ẏd + ϕ̇ (ẏ, p1, p2) (32)

Such terms were computed considering:

ḞHd = (−Kd −Mλ) ¨̃y −Kdλ ˙̃y +M
...
y d + ϕ̇ (ẏ, p1, p2) (33)

¨̃y = −λ ˙̃y −M−1Kd

(
˙̃y + λỹ

)
+M−1F̃H −M−1 (FD + ϕ) (34)

From Equation 26, if FD = ϕ = δ = 0, by applying the Sylvester Criterion,
KdKp > 1/2H is a sufficient condition to ensure that V̇ (t) is negative definite.
Therefore, ∥ρ∥ → 0 as t → ∞. But, if δ ̸= 0 and/or FD ̸= 0 and/or ϕ ̸= 0, by
the same criterion, N2 can be made symmetric and positive definite if:

Kp >
1

(λ2KdH) (1 + δ)

⇒

((
1

2
Hλ+

δα1

2

)2

+

(
1

2
H +

δα2

2

)2

λ2 + λ2KdHδ (Kd − λM)
1

M

) (35)

where such condition is satisfied by choosing Kp as an appropriate value. With
the feedback gains and parameter values presented in Section 6, and using H =
9 × 105, the criterion defined in Equation 35 holds for δ̄ = 0.17, which means
that the stability condition holds for estimation errors up to ±17% in the output
given by the static neural network. Within the region where this condition is met,
application of the Rayleigh-Ritz Theorem combined with the Cauchy-Schwartz
Inequality to Equation 26 yields:



V̇ ≤ −λ2T ∥ρ∥∥∆∥min (36)

where λ2min is the minimum eigenvalue of N2. Under the assumption that ϕ,
FD and δ are upper-bounded, and since Ψd has also an upper limit Ω̄d because
it is derived from the desired trajectory, we have that ∥∆∥ is upper-bounded

by ∆̄ =

√
λ2H2

(
F̄D + ϕ̄

)2
+H2

(
F̄D + ϕ̄

)2
+ δ̄2Ψ̄2

D. Therefore, the condition

V̇ (t) < 0 is attained if:

∥ρ∥ > ∆̄

λ2min
(37)

From Equation 37, we can conclude that any system trajectory with initial
condition ρ(0) that is outside a ball with a radius ∆̄/ (λ2min) must converge
and remain confined to such ball as t → ∞. Such a condition ensures that
∥ρ(t)∥ is a limited quantity. Moreover, in the absence of disturbances and if the
action of the neural networks can overcome parametric uncertainties, we have
FD = δ = ϕ = 0 and the closed-loop tracking errors converge asymptotically to
zero.

8 Results

The simulations were carried out by means of a position-tracking control involv-
ing a sinusoid with an amplitude of 0.08 m and angular frequency of 0.75 rad/s.
The friction force FA is represented in the simulations by means of the model of
Gomes, proposed in [21]. The parameters of the friction model are described in
[13]. The static neural networks were built with 30 neurons in the hidden layer.

The feedback gains used in the proposed controller were kept fixed with the
values of Kd = 5000s−1, λ = 150s−1, and Kp = 200s−1. For comparison pur-
poses, we also performed a simulation using a classical PID controller and applied
the proposed controller with the static neural network replaced by analytical
functions. Such a controller uses only the viscosity friction term to compensate
for the friction force in the piston, applying experimental parameters in Equa-
tion 4. The feedback gains values for PID are Kp = 420, Ki = 2018, Kd = 0.9,
and were acquired according to the methodology described in [13]. Simulation
results are shown in Figures 4 and 5, and Table 2 presents the RMSE results.
Without the presence of a load disturbance, the results of MLP and WNN are
similar, confirming that the present strategy keeps the effectiveness of the analyt-
ical controller, which uses analytical functions instead of static neural networks.
According to [11], analytical functions are very hard to acquire. Applying a mod-
erate load disturbance of 50 N, MLP neural networks present better error results
than WNN, confirming that WNN is suitable only to local approximations and
an online adjustment of the weights is necessary when a parametric variation
occurs in the plant. MLP remains with effective results due to its characteristics
as a global approximator.



Fig. 4. Simulation of sinusoidal trajectory tracking control.

Fig. 5. Simulation of sinusoidal trajectory tracking control with FD = 50 N.

Table 2. Simulation position errors.

Disturbance (N) Controller Position error RMSE (m)

FD = 0

MLP 5.75× 10−5

WNN 8.09× 10−5

Analytical 10.68× 10−5

PID 36.79× 10−5

FD = 50

MLP 8.14× 10−5

WNN 36.73× 10−5

Analytical 8.68× 10−5

PID 34.58× 10−5



Experimental results regarding the plant are described in [11] and depicted
in Figure 2, where the parameters are according to Table 1. Figures 6 and 7
illustrate the results, outlined in Table 3. Experimental results confirm previous
simulation results. The proposed controller is effective in reducing the position
error when compared with a traditional PID controller. However, when a distur-
bance force of 147 N is applied in the load, we can observe that the error results
expose an important drawback that is present in model-based offline controllers:
they are not able to deal with the presence of a high value for the load distur-
bance.

Fig. 6. Experimental result of sinusoidal trajectory tracking control.

Table 3. Experimental position errors.

Disturbance (N) Controller Position error RMSE (m)

FD = 0
MLP 8.3× 10−5

Analytical 18× 10−5

PID 31.2× 10−5

FD = 147

MLP 27.3× 10−5

Analytical 34.9× 10−5

PID 30× 10−5



Fig. 7. Experimental result of sinusoidal trajectory tracking control with FD = 147 N.

9 Conclusion

In the present work, we propose the use of an offline trained static neural net-
work to compensate for the nonlinearities present in the plant of a hydraulic
actuator. This strategy aims to simplify and improve the application of feedback
linearization-based control schemes to such systems, keeping the effectiveness of
the controller. We showed by means of simulation and experimental results that
the proposed controller is very effective in reducing position error compared with
a traditional PID controller, with stability guarantees in the closed loop system.
Future work will focus on the expansion of the proposed method to encompass
high values of load disturbances in the hydraulic plant.
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