Sistema Inteligente para Caracterização de Consumo Residencial de Energia Elétrica visando a opção ou não da Tarifa Branca

Abda Myrria de Albuquerque Núcleo de Computação (Nucomp) Universidade do Estado do Amazonas (UEA) Manaus, Brasil ama.eng@uea.edu.br Lahis Gomes de Almeida

Instituto de Computação

Universidade Estadual de Campinas

Campinas, Brasil

1228213@g.unicamp.br

Edgard Luciano Oliveira da Silva
Núcleo de Computação (Nucomp)
Universidade do Estado do
Amazonas (UEA)
Manaus, Brasil
elsilva@uea.edu.br

Resumo— Este trabalho consiste na análise de dados capturados de aparelhos eletrodomésticos por meio de um monitor de consumo de energia, para fins de avaliar a quantidade do uso de eletricidade. A proposta será desenvolver um sistema inteligente de consumo residencial de energia elétrica no qual deverá ser capaz de caracterizar a viabilidade da opção da Tarifa Branca, analisando quanto que cada aparelho eletrodoméstico utiliza de eletricidade em vários períodos do dia em uma rotina normal, com o intuito de conscientizar a economia de energia.

Palavras-Chave—consumo residencial; período; tarifa branca; eletricidade;

Introdução

A energia elétrica se tornou uma necessidade básica e essencial para cada indivíduo. Atividades simples como navegar pela Internet, jogar videogames, lavar roupa e muitas outras, só são possíveis por meio da energia elétrica presente no mundo moderno. No entanto devido ao aumento do consumo de energia elétrica em certas ocasiões do dia, e por consequência o aumento respectivo na conta de energia, entrou em vigor no ano de 2018 uma opção que sinaliza aos consumidores a variação do valor da energia conforme o dia e o horário do consumo, chamada de Tarifa Branca.

Tarifa Branca é uma novidade que oferece energia mais barata em horários que fogem daqueles de pico tradicional, quando o consumo é intenso [2]. De acordo com ANEEL (Agência Nacional de Energia Elétrica), o consumidor passa a ter a possibilidade de pagar valores diferentes em função da hora e do dia da semana.

Será oferecida para as unidades consumidoras que são atendidas em baixa tensão (residências e pequenos comércios, por exemplo). E só será uma vantagem se o consumidor adotar hábitos que priorizem o uso da energia nos períodos de menor demanda (manhã, início da tarde e madrugada, por exemplo), caso o contrário, não haverá uma variação significante no valor da energia consumido. Observando a Figura 1, disponibilizada no site da ANEEL, pode-se ver os períodos

fora de ponta e em que momento a Tarifa Branca seria aplicada.

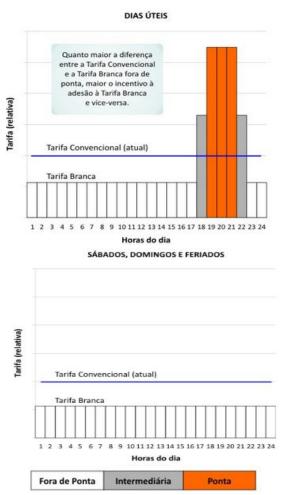


Figura 1 Comparativo entre a Tarifa Branca e a Tarifa Convencional.

Fonte: Agência Nacional de Energia Elétrica (ANEEL), 2011

FUNDAMENTAÇÃO TEÓRICA

I. Distribuição de Energia Elétrica

A etapa final no fornecimento de energia elétrica é a sua distribuição para os estabelecimentos. É a parte do sistema elétrico que está ramificado ao longo de ruas e avenidas para conectar fisicamente o sistema de transmissão, ou mesmo unidades geradoras de médio e pequeno porte, aos consumidores finais da energia elétrica.

Essas ramificações são chamadas de linhas de distribuição primária, nas quais transportam a média tensão até aos transformadores de distribuição que se encontram próximos às instalações do cliente. Esses transformadores de distribuição, por sua vez, diminuem a tensão de novo para a sua utilização por eletrodomésticos e normalmente alimentam vários clientes através de linhas de distribuição secundária com níveis de baixa tensão.

A. Tarifação

Para um contínuo uso do serviço de energia elétrica e da sua distribuição é necessária a utilização de tarifas para que o fornecedor receba pelo o serviço prestado de forma adequada, viabilizando a estrutura para manter o serviço com qualidade e também criar incentivos para eficiência. Seguindo tais condições, a ANEEL desenvolve metodologias de cálculo das tarifas para determinados segmentos do setor elétrico (geração, transmissão, distribuição e comercialização), considerando fatores como a infraestrutura de geração, transmissão e distribuição, bem como fatores econômicos de incentivos à modicidade tarifária e sinalização ao mercado. A tarifa considera três custos distintos, conforme Figura 2.

Figura 2 Composição da tarifa.

Fonte: Agência Nacional de Energia Elétrica (ANEEL), 2017

De acordo com o site da ANEEL [3], além da tarifa, os Governos: Federal, Estadual e Municipal cobram na conta de energia o PIS/COFINS, o ICMS e a Contribuição para Iluminação Pública, respectivamente.

II. Sistemas Inteligentes de monitoramento

Com o avanço nas áreas de pesquisa em Internet das Coisas (IoT), a tendência é que nossa casa, nossos equipamentos eletrônicos, nossos carros, se tornem mais inteligentes. Em breve será possível programar eletrodomésticos que notifiquem se o consumo de energia em certo horário é mais barata. Aliás, com o sistema de medição inteligente é possível identificar quanto cada aparelho consome mensalmente, algo quase impossível hoje em dia.

A. Smart Grid

Existe uma proposta de criação de uma rede de energia inteligente, também conhecida como Smart Grid, uma ideia para conscientizar o consumo de energia.

A ideia é que as novas redes serão automatizadas com medidores de qualidade e de consumo de energia em tempo real, ou seja, será possível que a residência se comunique com a empresa geradora de energia [4]. A inteligência também será aplicada no combate à ineficiência energética, isto é, a perda de energia ao longo da transmissão. O conceito é apresentado na Figura 3.

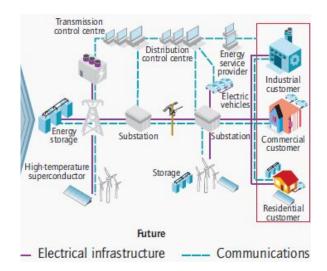


Figura 3 Representação de uma Smart Grid. Fonte: International Energy Agency (IEA), 2011

METODOLOGIA

Inicialmente será utilizado um monitor de energia convencional para capturar esses dados de consumo de cada eletrodoméstico individualmente, conforme Figura 4. Estes dados serão anotados e analisados para, ainda que de forma rudimentar, verificar se houve variações na quantidade que se utiliza de eletricidade.

2018 Brazilian Technology Symposium

Figura 4 Monitor P4460.01 Kill a Watt E. Fonte: Própria

RESULTADOS

Os resultados foram obtidos num intervalo de algumas horas, conforme Tabela 1:

Tabela 1 Dados obtidos através do Monitor P4460.01

Eletrodomés- tico	Tempo/ Duraçã o	Consumo (kWh/mês)	Potência (Watts)
Geladeira DAKO Model/Tensão: DT460/127V	4h	0,53	7,5 (porta fechada) 23,5 (porta aberta)
Ventilador Loren Sid Turbo 50 cm, 127V, 200W~	1h	0,22	222
Secador de Cabelo Conair Polishop Model:2735TBR	10min	0,14	866
Ferro de Passar Black&Decker VaporXpress 500	35min	0,10	

Fonte: Própria

Depois de todo o estudo levantado, pode-se observar algumas variações nos períodos do dia. Os dados ainda não

são como esperados, pois não foi possível capturar os dados num período contínuo dos eletrodomésticos analisados, porém é um começo para continuar a pesquisa por métodos mais eficientes para a análise dos dados.

Discussões e Conclusões

A proposta principal do projeto é auxiliar o consumidor na escolha mais viável de tarifa de conta de energia. Além de mostrar a quantidade de energia consumida em cada eletrodoméstico diariamente, propondo mudanças de hábitos que possam afetar na conta no fim do mês. Com isso, será possível conscientizar a população sobre os gastos desnecessários de energia, poupando o meio-ambiente de mudanças na sua estrutura para satisfazer o homem em sua comodidade.

Futuramente, poderá ser implementado dispositivos capazes de capturar o consumo de cada aparelho eletrônico ligado na rede elétrica em uma residência, de forma paralela e em tempo real. Armazenando-os em um banco de dados na rede, sendo possível acessá-los de qualquer lugar que tenha acesso a internet. Calculando o consumo diário total de cada eletrodoméstico, verificando em quais períodos do dia houve mais consumo de energia, caracterizando a viabilidade do uso da Tarifa Branca ou não.

Referências

- [1] ANEEL, Agência Nacional de Energia Elétrica, 2015.
- [2] Agência Nacional de Energia Elétrica (Brasil). Tarifa Branca / Agência Nacional de Energia Elétrica. Brasília : ANEEL, 2017.
- [3] Agência Nacional de Energia Elétrica (Brasil). Entendendo a Tarifa / Agência Nacional de Energia Elétrica. Brasília : ANEEL, 2002.
- [4] Technology Roadmap Smart Grids. International Energy Agency. Disponível em:
- https://www.iea.org/publications/freepublications/publication/smartgrids_roadmap.pdf
- B. G. João Luiz, "Sistema para monitoramento de consumo de energia elétrica particular, em tempo real e não invasivo utilizando a tecnologia Arduino". Disponível em:
- http://www.uel.br/ctu/deel/TCC/TCC2016_JoaoLuisGrizinskyBrito.pdf Acesso em 16 de Setembro de 2018.