Comunicação Remota entre Veículo Mini-Baja e *box* utilizando *XBee* e *LabView*

Alex Torres Carvalho Núcleo de Computação (Nucomp) Universidade do Estado do Amazonas Manaus, Brasil Email: atc.eng@uea.edu.br Lahis Gomes de Almeida Instituto de Computação Universidade Estadual de Campinas Campinas, Brasil Email: 1228213@g.unicamp.br Edgard Luciano Oliveira da Silva Núcleo de Computação (Nucomp) Universidade do Estado do Amazonas Manaus, Brasil Email: elsilva@uea.edu.br

Resumo-Na competição automobilística Fórmula 1, os dados do veículo precisam ser transmitidos para os membros da equipe no box acompanharem a situação do veículo e, consequentemente, auxiliarem o piloto do mesmo a tomar decisões de forma correta durante as corridas. No caso da competição nacional BAJA SAE Brasil a situação é semelhante. É comum algumas equipes trocarem informações por meio de rádio-frequência. Entretanto, a chance de uma equipe interferir na transmissão de outra é grande, já que utilizam tecnologias que operam na mesma faixa de frequência. Este artigo trata da utilização de rádio-frequência para fazer a comunicação veículo-box entre um veículo mini-Baja da competição BAJA SAE Brasil e a equipe no box. A equipe do estudo, Baja UEA, recebe os dados no box por meio do módulo de radiofrequência X-Bee e são apresentados no software da National Instruments, o LabView. O artigo apresenta ainda possíveis alternativas para solucionar o problema de interferência, podendo beneficiar não apenas a própria equipe, como todas as equipes da competição.

Palavras-chave—XBee, Baja, Arduino, LabView.

I. Introdução

A BAJA SAE Brasil é uma competição organizada anualmente pela SAE Brasil, filial da *Society of Automotive Engineers* (SAE), cuja origem passa por grandes nomes como Thomas Edison e Henry Ford. A última edição, em fevereiro de 2018, ocorreu na FATEC de São José dos Campos e teve a inscrição de 84 equipes, de várias faculdades diferentes, como a FEI, USP, UFMG e UFPE [1]. Os participantes dessa competição se envolvem em um caso real de desenvolvimento de um veículo *off road*, tipo de veículo que anda por estradas não-pavimentadas. As etapas do desenvolvimento do carro vão desde sua concepção, projeto mecânico detalhado, montagem e testes. [2].

Uma das equipes que compete regularmente é o Baja UEA, da Universidade do Estado do Amazonas. A equipe, fundada em 2012, compete desde 2016 e desde então, já foi três vezes premiada como Melhor Equipe da Região Norte. A oficina da equipe fica em Manaus, na Escola Superior de Tecnologia (EST) da UEA. As paredes são de alumínio, e possuem dois andares, um da oficina e o outro o mezanino, onde acontecem as reuniões. A Figura 1 apresenta o *BMA-18*, carro ganhador do tricampeonato. A sigla BMA significa *Baja Markku Alén*, em homenagem ao ex-piloto de rali finlandês Markku Alén.

O Baja UEA é composto por estudantes de diversos cursos de Engenharia, como Engenharia Mecânica, Elétrica e Computação. Possui quatro áreas de desenvolvimento: Dinâmica Veicular, responsável por construir a suspensão, direção, freio e transmissão do carro, Estruturas, responsável por construir o chassi e o design do carro, Gestão, responsável pela gestão financeira da equipe, marketing e pelos eventos que a equipe organiza; e Eletrônica. A área de Eletrônica é responsável pela comunicação veículo-box. É nela que é realizada a aquisição dos dados enviados pelo veículo, a programação dos sensores do mesmo e o desenvolvimento do software de monitoramento presente no box.

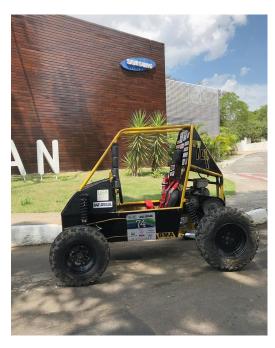


Figura 1. BMA-18, Mini-Baja do tricampeonato do Baja UEA em 2018.

O regulamento da competição define que devem estar completamente funcionais a luz de freio e os dois *kill-switches*, dispositivos que devem desligar o veículo inteiro, exceto a luz de freio [3]. Entretanto, apenas essas informações não são suficientes para as equipes participantes, pois elas precisam dos dados da velocidade e do nível de combustível do veículo

em tempo real para que, por exemplo, possam escolher as melhores estratégias durante a competição. Dessa forma, a comunicação remota entre o veículo e o *box* da equipe precisa ser rápida e eficiente para que um bom desempenho durante as provas da competição seja alcançado.

Um problema que costuma surgir durante a competição é a interferência na comunicação de dados. Afinal, se duas ou mais equipes estiverem usando radiofrequência para isso, e estiverem na mesma frequência, a chance de interferência é bastante alta.

Neste contexto, este trabalho propõe uma abordagem de como evitar a interferência da comunicação remota entre o veículo *off road* e o *box* da equipe, utilizando tecnologias que minimizem a perda de dados durante a transmissão de informações, tornando o tráfego rápido e eficiente. O trabalho está dividido da seguinte forma: a seção 2 apresenta a fundamentação teórica, a seção 3 descreve a metodologia proposta, a seção 4 descreve os resultados obtidos e, por fim, a seção 5, as conclusões e trabalhos futuros.

II. FUNDAMENTAÇÃO TEÓRICA

Na competição BAJA SAE Brasil, os dados dos veículos são transmitidos, em tempo real, para as respectivas equipes em seus *boxes*, permitindo o monitoramento dos veículos e auxílio aos pilotos na tomada de decisões. A seções A e B descrevem as duas etapas da comunicação veículo-*box*, Comunicação entre piloto e equipe e *Software* do *Box*.

A. Comunicação entre Piloto e Equipe

Uma das tarefas do projeto da área de Eletrônica, de uma equipe da Baja SAE Brasil, envolve a comunicação entre o piloto e a equipe. No caso da equipe do Baja UEA, isso é feito por radiofrequência. Esta comunicação é essencial, pois permite tanto ao piloto quanto à equipe tomarem melhores decisões durante a competição. Com uma comunicação veículo-box eficiente, é possível comunicar quaisquer dados módulo para módulo, assim como acontece numa comunicação serial. [5]

O principal problema na utilização de radiofrequência na competição é o fato de que outras equipes também utilizam a mesma faixa de espectro na transmissão de informações. Dessa forma, a probabilidade de duas ou mais equipes utilizarem a mesma frequência durante a competição, ocasionando interferência na comunicação é enorme. [9]

B. Software no box

Os dados do carro provenientes da comunicação devem chegar ao *box* da equipe. Esses dados são tratados por um *software*, que monitora o estado do carro. Se necessário, a equipe pode comunicar-se com o piloto informando algum problema com o veículo. O ideal é que tudo funcione como na competição automobilística *Fórmula 1*, onde o piloto pode se comunicar sempre que possível com a equipe, e a equipe pode se comunicar com o piloto sobre, por exemplo, que estratégia adotar ou sobre problemas no veículo. A Figura 2 apresenta a equipe no *box* de *Fórmula 1*.

Figura 2. Assim como na Fórmula 1, a equipe na competição deve ser capaz de monitorar o desempenho do veículo. [4]

III. METODOLOGIA

A. Comunicação veículo-box

Na comunicação veículo-box da equipe Baja UEA, foi utilizado o módulo de radiofrequência XBee. Esse módulo realiza comunicação serial entre dois pontos para estabelecer conexões wireless. As redes utilizam o Protocolo de Comunicação ZigBee para a transferência de dados [5]. A radiofrequência do XBee foi a opção escolhida pois é a mais simples de se implementar na placa Arduino. A outra alternativa era o módulo Wi-Fi, porém ele possui uma arquitetura muito mais complexa, diferente da radiofrequência do XBee, que é realizada ponto a ponto. Dessa forma, por ter alta praticidade de implementação e pelo seu alcance em campo aberto (cerca de 1 km) [7], esta foi a opção escolhida pela equipe. Para realização dos testes, foram utilizados dois módulos XBee. Um módulo instalado no veículo e o outro conectado via USB a um notebook no box como ilustrado na Figura 3.

B. Software no box

Com os dados provenientes do veículo chegando ao notebook por meio de *XBee*, estes devem ser tratados e apresentados para a equipe. O *software* escolhido para esta tarefa foi o *LabView*, da *National Instruments*. A escolha foi feita por se tratar de um *software* mais profissional, utilizado por todas as engenharias e, inclusive, empresas gigantes como a *Siemens*, *Philips* e *Nokia* [6].

Figura 3. Esquema da comunicação veículo-box da equipe Baja UEA.

IV. RESULTADOS

Os resultados obtidos na etapa de desenvolvimento atual, foram testes realizados em bancada, ou seja, simulações de situações reais. Durante estes testes, um dos módulos ficou dentro da oficina e outro foi levado para ambiente externo, como apresentado na Figura 4. Apesar do alcance do XBee ser de até 1.600m em ambiente aberto e 90m em ambiente fechado, segundo sua especificação [7]; com cerca de 100 metros de distância a comunicação já demonstrava falhas, apresentando atraso de 5 segundos na recepção dos dados.

Figura 4. Vista aérea no Google Earth mostrando a localização dos dois módulos exemplificando o momento em que as falhas ocorreram.

Diversos fatores interferiram nos testes, como por exemplo, as paredes de alumínio da oficina e o módulo estar situado no andar superior, ou seja, em uma altura consideravelmente alta, prejudicando os testes. Estas interferências reduziram em 90% o real alcance do *XBee* se comparando o resultado dos testes com o manual do produto, configurando o problema da Gaiola de *Faraday*, que demonstrava que quando um espaço está totalmente envolto por um condutor, torna-se livre da ação de campos elétricos no exterior [8]. Contextualizando para a situação dos testes de bancada, o alumínio da parede da oficina dificultou expressivamente a saída das ondas do *XBee*.

O software do box, denominado pela equipe como Virtual-BAJA, teve sua implementação praticamente concluída e está na espera da especificação de mais requisitos pelo restante da equipe. O cenário onde os dados chegam sem perdas no USB foi testado. O software desenvolvido realiza de forma eficiente esta etapa, separando os dados da velocidade, rotação do motor e nível de combustível em seus respectivos campos na interface gráfica. A Figura 5 apresenta o painel frontal do VirtualBAJA.

CONSIDERAÇÕES FINAIS

Este artigo apresentou uma abordagem para a utilização de rádio-frequência na comunicação veículo-box da equipe Baja UEA. A equipe recebe os dados no box por meio do módulo de radiofrequência *X-Bee* e os apresenta em interface gráfica. Os testes mostraram que apesar do software do box (VirtualBAJA) estar finalizado para o testes de de recepção, a transmissão em si sofre perda no alcance de transmissão veículo-box (90%) devido ao efeito da Gaiola de Faraday.

Os trabalhos futuros envolvem aprimoração do Virtual-BAJA, que pode sofrer mudanças, conforme os membros

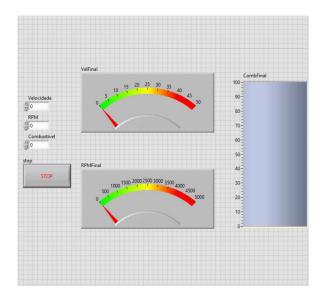


Figura 5. Painel frontal feito para os testes de bancada do VirtualBAJA.

das outras áreas, Dinâmica Veicular e Estruturas, solicitarem. Pretende-se fazer melhores testes de bancada do *XBee* em ambiente aberto, para que não ocorra novamente o problema da Gaiola de Faraday. Um futuro local de testes é a pista criada pela própria equipe para os testes do veículo e os testes de piloto da equipe, localizada na parte de trás da EST. Está sendo feito também um melhor estudo do módulo *XBee*, para verificar se é possível ajustar a frequência do mesmo, evitando interferências na comunicação de outras equipes durante a competição. Caso isso seja alcançado, cada equipe da competição que utilizar o *XBee* poderá operar em uma frequência diferente das outras, evitando assim interferências no sinal de transmissão.

REFERÊNCIAS

- [1] Classificação final da Baja SAE Brasil 2018. Disponível: https://bajasaebrasil.online/18BR/prova.php?id=18BR_GER
- [2] Baja SAE Brasil Portal SAE Brasil. Disponível: http://portal.saebrasil.org.br/programas-estudantis/baja-sae-brasil
- [3] Regulamento Administrativo e Técnico da competição Baja SAE Brasil. Disponível: http://portal.saebrasil.org.br/Portals/0/PE/BAJA-2018/RATBSB_emenda_01.pdf.
- [4] Formula 1. Race Strategy. Disponível: https://www.formula1.com/en/championship/inside-f1/understanding-f1-racing/Race_strategy.html
- [5] Xbee Comunicação entre dois Arduinos. Disponível: https://portal.vidadesilicio.com.br/xbee-comunicacao-entre-arduinos/
- [6] Viewpoint Systems. Where is LabVIEW Used? Who uses LabVIEW? What companies use it?. Disponível: https://www.viewpointusa.com/labview/where-is-labview-used-whouses-it-companies-that-use-it/.
- [7] Manual dos módulos XBee e XBee Pro. Disponível: https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf.
- [8] Villas Bôas, N., Doca, R. H., e Biscuola, G. J. (2016). Eletricidade e Física Moderna - Volume 3.
- [9] Audio-Technica. Tipos de interferência. Disponível: https://www.audiotechnica.com/cms/site/3a85b4f0fc5c3c23/index.html.