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Abstract. A hybrid Superresolution framework is proposed, using an
approach based on neural networks to improve the image estimated by
superresolution algorithms based on maximum a posteriori (MAP). We
refer to the residual image which represents, we believe, the missing in-
formation. We use a set of networks to learn the relationship between
the residual image - available during the training step - and the image
estimated by the MAP approach. We trained our networks under the Ex-
treme Learning Machine paradigm, where a closed-form solution is ap-
plied when training a single layer feed-forward neural network. We tested
our proposal over five image datasets: LIVE, Set5, Set14, Urban100 and
B100. And we used another set, with 91 images, for the training step. Our
results have shown improvements when comparing them with two multi-
frame superresolution methods, the Bilateral Total Variation (BTV) and
Weighted Bilateral Total Variation (RWBTV) approaches.

Keywords: Multiframe Superresolution, Regularized Extreme Learning
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1 Introduction

Superresolution (SR) methods aim to increase the spatial resolution of one image
(singleframe SR) or a set of them (multiframe SR). This work is focused on mul-
tiframe SR. Among the many different approaches presented by state-of-the-art
of superresoultion we emphasize the reconstruction-based ones and the example-
based ones. Particularly, regarding the reconstruction methods, we stress the use
of maximum a posteriori estimation (MAP) to solve the optimization problem
that arises from the modeling. In turn, for the learning approaches, we refer to
the use of neural networks.

Multiframe methods take advantage of the different information available
from the sub-pixel displacement between the several LR input frames. Due to
the modeling of the image formation process and the presence of random noise,
such methods place the SR problem into the Bayesian paradigm. One of the
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first relevant works to explore this framework was proposed by Elad and Feuer
[6], where the solution is estimated via Maximum Likelihood (ML), MAP and
Projection Onto Convex Sets (POCS), besides using prior information, calcu-
lated via ℓ2 norm. On the other hand, the use of ℓ1 norm in the prior term - also
called "regularization term" - via Bilateral Total Variation (BTV) was originally
proposed by Farsiu et al. [8] and later used by other prominent works such as
the one from Villena et al [16]. The need of a regularization term is due to the
ill-posedness of the inverse problem. The choice of ℓ1 norm, in particular, regards
the attempt to recover edge elements.

On the other hand, the main idea of example-based approaches is to map the
relationship between the LR and original HR images, using a training dataset
and machine learning techniques to learn this relationship. Later, such learned
information is used to estimate the output image. Freeman et al. [9] were one
of the firsts to apply a learning process via external database to the context of
SR. In such work, patches are extracted from the LR image and for each patch,
a nearest neighbor is searched among the patches from the external database.
Then, the high frequency (HF) elements of the chosen patch are extracted and
added to the estimated HR image. Deep learning approaches, such as [5], are
among state-of-the-art methods, however, they demand a higher computational
cost. Multiple-mapping algorithms [14] also present good results and are based
on describing the HR-LR images relation via multiple regressors.

From the premise that the MAP-based methods do not reconstruct all rel-
evant information, our proposal is to apply an example-based method to an
image estimated by a reconstruction-based algorithm, in order to improve such
result. The definition of the prior is made in a way to enhance edge content.
However, we believe that other type of information may also be important. To
test our hypothesis we chose two multiframe methods, one based on Bilateral
Total Variation (BTV) regularization [8], which is a well-established method;
and another based on Weighted Bilateral Total Variation (RWBTV) [12], which
presents adaptive regularization.

The example-based singleframe method [3] aims to relate the filtered image
(resulting from bicubic interpolation) and the relating high frequency content
extracted from the original HR image, available during the training step. The
neural networks are trained under the Regularized Extreme Learning Machine
(R-ELM) [4] approach, which is a closed-form solution for the training problem
when using a single layer feedforward network.

This paper is organized as follows: Section 2 briefly explains the MAP frame-
work applied to SR algorithms, Section 3 explores the Neural Networks frame-
work for superresolution, in Section 4 we explain our proposed framework, in
Section 5 we show our experiments’ methodology and results and finally, Sec-
tion 6 explores our conclusions.
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2 Maximum-a-Posteriori Framework

Superresolution can be defined as an inverse problem, where the LR input image
(or the set of them) is seen as a blurred, warped, noisy and down-sampled version
of the HR image [6]. Such model is formulated as

yk = WkDBx+ η = Hkx+ η, (1)

where x is the original HR image, yk is one of the k LR images, Wk is the
warping operator, B is the blurring operator, D represents the down-sampling
operator and η is the additive noise.

Under the Bayesian perspective the sequence of LR images and the HR image
are modeled as random variables [6]. Assuming η as additive White Gaussian
Noise (AWGN), the image estimation problem can be written as

x̂ = argmax
x

[
K∑

k=1

‖Hkx− yk‖+ p(x)

]
, (2)

where p(x) is a prior term and it works, from the optimization point of view, as
a regularization parameter.

The prior is chosen in order to accentuate a particular characteristic such
as edges elements or to perform noise removal, for instance. The Bilateral To-
tal Variation (BTV) prior, proposed by [8], is known for removing noise while
preserving edge components and was originally formulated as

p(x) = ΓBTV(x) =
P∑

m=−P

P∑

n=−P

α|m|+|n|‖x− Sv
mSh

nx‖1, (3)

with P ≥ 1 and α ∈]0, 1]. Sv
m and Sh

n are the vertical and horizontal derivatives,
respectively. P defines the window (2P +1)× (2P +1) where the derivatives are
exploited and α is the scale factor.

However, the properties of the BTV prior are limited in terms of edge preser-
vation. In this sense Kohler et al. [12], proposed a generalized version of such
prior, formulated as

ΓRWBTV =

P∑

m=−P

P∑

n=−P

‖A(x− Sv
mSh

nx)‖1, (4)

where A = diag(α1, ..., αN ′) with N ′ = (2P + 1)2N , where N = N1 × N2 is
the dimension of the HR image. Note that, in Equation (3), only one number
α weights the prior. On the other hand, in Equation (4), a weighting matrix
A is applied. That way, it is possible to reconstruct the HR image locally. For
example, a homogeneous region and a region with edges may be reconstructed
differently.
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3 Neural Networks Framework

Example-based approaches are usually applied to singleframe Superresolution
methods. In such cases, an acquisition model is formulated as Equation (1),
with only one LR image (x) and no warping operator (Wk). Also, the additive
noise η is usually not assumed.

The goal of machine learning methods is to learn the relationship between
y and x through a external dataset of examples. Each image of such dataset is
deformed according to the acquisition model, forming then, the set of pairs of
HR original images and corresponding LR images. However, instead of learning
the direct relationship between the given LR image and the estimated HR image,
one first estimation (e.g. bicubic interpolation) may be performed resulting in
Y0. Such estimation is subtracted from the original HR image X, resulting in Z,
which is believed to be constituted by high frequency components of the original
HR image. Here, we refer to Z as residual image. The external database is then
used to map Y0 to Z.

Regarding the testing stage, the LR image is interpolated, resulting in Ŷ0,
which feeds the previously trained set of artificial neural networks (ANNs) that
estimates Ẑ. Finally, such result is added to the first interpolated image, to
obtain the final estimated image X̂.

Cosmo et al. [3] consider patches of images instead of the whole data. The
idea is to form K clusters, according to the geometric information contained
in each patch. For each cluster one network is trained to map the relationship
between the relating patch pairs, in a way that each network is more special-
ized on a type of information, given the cluster. Following [14], these clusters
are formed using a set of three geometric information based on local gradient
statistics, evaluated by eigenanalysis [18]: strength, coherence and orientation.
The clusters are distributed in a 3D histogram, where each bin is defined by its
respective coherence, strength and orientation. Therefore, the number of bins
also defines the number of networks to be trained. In the testing stage, each
patch is assigned to a cluster and then, set as input for the network associated
with such cluster. The output patches from all networks are assembled forming
the complete estimated image Ẑ. For more details about the clustering scheme,
the reader should refer to [18].

Once the patches are clustered, each network is trained using Regularized
Extreme Learning Machine (R-ELM) [4], which results in a more generalized so-
lution when compared with the original ELM [10]. Besides, it is also more robust
to over-fitting than the latter. In such context the hidden nodes parameters are
randomly chosen and the output weights are evaluated via Moore-Penrose Gen-
eralized Inverse, which is a closed-form solution based on the following equation,

Bopt =
( I

C
+ LTL

)−1

LTT, (5)

where L is the matrix of output values of the hidden layer, C is the regularization
parameter and Bopt is the weight matrix.
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4 Hybrid Framework

Acquisition Model

HR Image

k LR images

MAP-based SR

ANNs Training

Parameters

Residual Image

Estimated HR Image

Training
Dataset

(a) Training Stage

MAP-based SR

Initial Estimated HR Image

Trained ANNs

Parameters

Estimated Residual Image

Final Estimated HR Image

Testing
Dataset

Acquisition Model

Ground Truth

k LR input images

(b) Testing Stage

Fig. 1: Hybrid Framework Proposed

Figure 1a shows a simplified scheme of the training stage. The original HR
image - extracted from the external dataset - is deformed through the Acquisition
Model, resulting on the set of k LR images. These images are firstly reconstructed
by a multiframe MAP SR method. The MAP methods we used are based on BTV
and RWBTV priors. The ANNs training includes the clustering and networks
training. The clusterization scheme based on egeinalysis, as explained in Section
3. Finally, the networks are trained under the R-ELM approach. As for the
testing stage, in Figure 1b, a different database is chosen. The Acquisition Model
and MAP-based SR are the same used for training. The image estimated by
the MAP-based SR is used as input for trained ANNs, obtaining the estimated
residual image, which is added to the Initial Estimated imaged. Then, the final
Estimated HR Image is compared with the Ground Truth, using PSNR and
SSIM.

5 Experiments

We applied the algorithms on five dataset: LIVE [15], Set 14 [19], Set 5 [2], B100
[13] and Urban100 [11]. Four different setups were tested: the robust ℓ1 norm
minimization with BTV regularization proposed by [8] combined with the Image
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Alignment Method proposed by [7], referred here as BTV; Our R-ELM trained
networks applied to the image estimated by the BTV SR method; the Robust
Multiframe Super-Resolution Employing Iteratively Re-Weigted Minimization,
proposed by [12], referred here as RWBTV and Our R-ELM trained networks
applied to the image estimated by RWBTV.

The acquisition model we are focused on is usually adopted by works based
on reconstruction, such as [12], [16] and [8]. That is, we assume additive noise
and a linear invariant point spread function (PSF). Thus, we compare our results
with MAP-based works. It would not be fair to consider approaches that do not
assume random noise, which is usually the case of singleframe example-based
approaches [3], [1], [5]. Regarding color images, we consider the Y channel, from
the YCbCr color space.

SSIM [17], PSNR and processing time were obtained. Each experiment was
run ten times. All the experiments were implemented in MATLAB R2016b,
using an Intel R© Core

TM
i7-8700K processor and 32 GB of RAM memory. For

each ground truth image we generated 8 LR images, simulating warping, down-
sampling and blurring effects, as done in [12]. The LR images were displaced
according to uniform distributed random translations in the range [−3,+3] pixels
and rotations in the range [−1◦,+1◦]. The blurring operator is based on a PSF
approximated by an isotropic Gaussian kernel of size 6 · σPSF (where σPSF = 0.5)
and the down-sampling operator was modeled according to the magnification
factor s. Moreover, each frame was disturbed by a white Guassian noise with
standard deviation σ = 0.025. Regarding the reconstruction-based step, we set
the parameters window size P = 2 and scale factor α = 0.6. The regularization
weight, in turn, was set to be automatically calculated over the iterations. The
motion estimation was solved using Enhanced Correlation Coefficient (ECC)
maximization [7], using an affine motion model.

The R-ELM networks were trained over the same dataset used by [5], which
presents 91 images. From each image, 20.000 samples were randomly extracted
and the patches were 5 × 5 sized. The 3D histogram was formed according to
the following intervals: [0, pi] with steps valued as π/20, for the orientation bins;
[0, 1/3, 2/3, 1] for the strength bins and [0, 1/3, 2/3, 1] for the coherence bins.
The ANNs were set with 1000 hidden neurons and sigmoid activation function.
Finally, the regularization term was defined as C = 28.

5.1 Results

Figures 2a and 2b show the quality results in boxplots. There is two charts for
dataset (PSNR and SSIM), where each box refers to one method. Besides, each
box represents the 10 realizations of the same experiment. In all graphs, the
median of the blue box (that is, our method with RWBTV) is the highest one.
In terms of PSNR, for Set5 our result is better in, at least, 25% of the cases,
when comparing with pure RWBTV. For B100, the improvement increases to,
at least, 75% of the cases and, for Urban100, 50% of them. For Set14, although
our median is higher, the two boxes (blue and yellow) show almost the same
results: ours over RWBTV from 27.3 dB to 28.2 dB and pure RWBTV from
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27.1 dB to 28 dB. However, looking at Table 1, one can see that the RWBTV
method is, on average, around 5 times slower than Ours with BTV. And for
Set14, the green box (the one referring to our method with BTV) is within the
range from 27.2 dB to 28 dB. That is, in this case, it is five times faster to apply
our method with BTV than RWBVT and the quality is the same, according to
the boxplot. Moreover, in Figure 3, the differences between the estimated images
can be visually noted. The PSNR and SSIM values for Figure 3d are both lower
than the ones related to Figure 3e. However, when observing the marked region,
we can notice more loss on the edge components for the latter.

(a)

(b)

Fig. 2: Boxplots showing the results when running the experiments over the
datasets Set14, LIVE, B100 and Urban100. In each plot, the boxes refer to
the relating method. From the left to the right: pink box: BTV method; green
box: Our method with BTV; yellow box: RWBTV method; and blue box: our
method with RWBTV. The circles represent outliers and the black lines mark
the median of each set. The results are presented in (a) PSNR and (b) SSIM.
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BTV Ours w/ BTV RWBTV Ours w/ RWBTV

Set5 3.97± 0.08 6.92± 0.11 30.91± 0.76 32.82± 0.58
Set14 8.73± 0.17 13.05± 0.06 64.00± 1.27 67.19± 1.02
LIVE 14.26± 0.07 19.42± 0.06 99.16± 1.65 103.85± 1.25
B100 5.74± 0.04 9.08± 0.03 39.95± 0.17 43.28± 0.22
Urban100 8.09± 0.03 11.64± 0.08 53.23± 0.43 57.57± 0.26

Table 1: Average Processing Time.

(a) Original Image (b) LR Frame (c) BTV
28.9304 dB (0.8528)

(d) Ours w/ BTV
31.3250 dB (0.8615)

(e) RWBTV
32.8469 dB (0.8900)

(f) Ours w/ RWBTV
34.8138 dB (0.9103)

Fig. 3: Estimated images resultant from the SR methods (c) ℓ1-BTV with IAT
registration, (d) Our approach over ℓ-BTV, (e) RWBTVand (f) Our appoach
over RWBTV applied to the ground truth image baby, from Set5, and ×2 mag-
nification factor.
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6 Conclusion

In this paper we have proposed a hybrid superresolution technique, combining an
approach based on MAP with one based on neural networks. Such networks were
trained using R-ELM, an approach that is fast and robust to over-fitting. An
external database and a clusterization based on eigenanalysis were used to feed
the training process. Our motivation is due to the belief that the first approach
do not estimate all the missing information from the LR frames and that such
information could be learned and described by neural networks.

We ran each experiment 10 times applying the algorithms to 5 datasets and
compared our proposal with one method based on BTV regularization and one
based on Re-Weighted BTV (RWBTV). The results have shown the improvement
accomplished by our proposal when applying it such MAP-based methods, both
quantitatively (PSNR and SSIM) and qualitatively, via visual inspection.
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