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Abstract—This article introduces a new target tracker for
videos and investigates the discriminatory power of color proba-
bility density in target identification. The nonparametric Kernel
Density and Histogram estimators were used. The results showed
that the performance of the proposed tracker is as robust as the
Mean Shift, but the results of the proposed tracker are more
stable. It was also observed that the target identification was best
when the histogram was used to estimate the color probability
density.
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I. INTRODUCTION

Video target tracking is an active area of computational
vision research and has a wide range of applications in
real world problems [1]. In spite of the various proposed
approaches, target tracking remains a challenging task, since
several factors can affect the performance of the proposed
models, such as object occlusion, non-rigid deformations, fast
movements, variation in lighting, low processing time and
rotations.

The tracking methods can be categorized into two groups
[1]: type 1: Detection tracking that identifies the target in each
frame by comparing the characteristics of the candidate targets
and the target model such as Mean Shift [2]; type 2: Tracking
by probabilistic methods that predict the unobserved position
of the target in the current frame given the observed target
positions in the previous frames, such as Kalman Filter [3]
and Particle Filter [4].

The population-based stochastic optimization techniques
have been employed along with the tracking algorithms of
both groups [5] [6] [1] [7].

In this article, a type 1 tracker based on Bare Bones Particle
Swarm Optimization algorithm [8], here called TBBPSO (T:
Tracker) is proposed. In each frame of a video the TBBPSO
spreads a cloud of particles in a region of the image until
the highest fitness particle is found. Each particle represents a
candidate target and the fitness is given by the quadratic dis-
tance of Bhattacharyya between the color probability densities
of the model and the candidate targets.

In this work, the central objective is to investigate the perfor-
mance of TBBPSO by analyzing the robustness and precision
of the tracking. For this, a random sample of ten benchmark
videos was obtained from Visual Tracker Benchmark/Hanyang
[9] and the results were compared to the results of the Mean
Shift tracker.

An investigation was also made on the ability to discrimi-
nate the color density of the analyzed objects as a characteristic
of target identification. Two nonparametric density estimators

were used, the histogram and the kernel, and the results were
also compared.

The structure of this paper is as follows: section II presents
the video target tracking method, the nonparametric density es-
timators, the histogram and the kernel estimator, and the Mean
Shift algorithm. Section III presents the proposed tracker. The
planned experiment, results and discussions are presented in
section IV. Finally, section V presents the conclusions.

II. TRACKING METHODS
A. Target Tracking in Videos

In this work only type 1 trackers were considered. A review
of type 2 trackers can be found in [10].

Type 1 trackers in general detect the target in the current
frame of the video seeking the target candidate with the highest
similarity to the target model. The measure of similarity is
obtained by comparing the appearances of the targets witch
are composed by a function of predetermined characteristics
of the objects. For different characteristics, appearance models
and measures of similarity, see [1] [10].

The characteristic adopted in this work is the color proba-
bility density of the targets that is a robust measure in relation
to the rotations, deformations and the change of scale of
the targets [11]. It is also adopted the appearance model as
characteristic and the quadratic distance of Bhattacharyya [12]
as measure of similarity.

B. Density Estimators

Let f(xz) be a probability density function (pdf) and
r1,Ts,...,L, be an observed random sample of size n of
f(x). The histogram is a nonparametric density estimator and
is given by the following equation:
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where Bj represents the interval or bin k, (k = 1,...,n%), h
represents the width of the bins, and the indicator function
I4(x) is defined as follows:

1, T € A,
La(z) = { 0, otherwise,

The parameter h, called the smoothing parameter, plays
a predominant role in the estimation process. If & is large
the histogram is very smoothed and hides regions of high
probability density; if h is small it produces a histogram
with much variation showing false modes. Therefore, finding
a suitable intermediate value for it is critical.
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We adopted the Sturges rule that determines the number of
bins as follows:

ng = [143.321logn], 3)

where n is the sample size, log is the logarithm at base 10
and [z] is the smallest integer greater than or equal to .
Therefore, in equation 1, h can be estimated by
b= @)
N
where Rx is the sample amplitude and ny, is given by equation
3 [13].

Although the histogram is a good tool for data analysis, it
is not very efficient as a density estimator due mainly to the
points of discontinuity at the borders between two consecutive
bins. An alternative density estimation proposal is the kernel
density estimator [14] [15] [13].

Given a random sample of size n of the density of proba-
bility f(z), the kernel density estimator is defined as:

. 1 & —
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where the function ker(z) is called the kernel function.

A kernel function must be continuous on the support of
variable X, the integral over the domain of X must be equal
to 1 and ker(z) must be symmetric in origin, besides having
the first two finite moments. In general, the kernel function is
defined by a pdf which the Normal kernel is the most popular.
Therefore, ker(z) inherits all the properties of the probability
density, such as continuity, symmetry, and differentiability
[16].

The smoothing parameter h, also called window size or
bandwidth in the kernel estimation context, remains funda-
mental. There are other factors that influence the final quality
of the kernel estimator, for example, the choice of the function
ker(z). However, h is the main factor that affects the quality
of the estimator.

The Mean Integrated Squared Error, M ISE, measures the
quality for both the kernel density and histogram estimators
and is defined as:

MISE =E [/QX (f(:c) - f(x))de] : ©6)

where E(X) is the expected value of the random variable X
and Qx is the sample space of X.

An estimator of the h parameter that minimizes MISFE
using the Normal kernel function is given by:

1/5
h* = (.?m) c~1.060n" 7, (7

where o2 is the theoretical variance, so o can be replaced by
the sample standard deviation, s, or by IQR/1.348. IQR is
the sample interquartile range [16].

For the multivariate case, given a d-dimensional random
sample of size n of the multivariate probability density f(x),
the multivariate kernel density estimator is given by

Fo) = S H erg (H 2 - x0)) - (®)
i=1

in which the smoothing parameter matrix H is a symmet-
ric positive definite matrix of order d. In general, H =
diag[h?, h3,...,h3] or H = hI with h a scalar smoothing
parameter and I is the identity matrix of order d [17].

A multivariate kernel kery can be generated by the product
of a univariate kernel ker; or by the rotation of the univariate
kernel ker; in the R?.

C. The Mean Shift Algorithm

The Mean Shift tracker, called in this article by TMS
(T: Tracker and MS: Mean Shift), is based on the Mean
Shift algorithm [17] [2]. Its choice is due to the fact that
it is a classic type 1 tracker that is already well tested and
compared to several other trackers [18]. In addition, the TMS
adopts kernel estimation of color probability density as a
characteristic of targets and the Bhattacharyya distance as a
measure of similarity between the model and candidate targets.

In Mean Shift, the targets are represented by the color
space density and are estimated by a special kernel class,
called the kernel profile, which produces a radially symmetric
kernel. More precisely, the densities are estimated by the
Epanechnikov kernel profile that guarantees a minimum MISE
estimate [17].

The target model is represented by the color probability
density ¢ and, in subsequent frames, a candidate target is
defined at the location y and is characterized by the color
probability density p(y). Both densities are estimated by the
same kernel profile.

The Bhattacharyya coefficient, p(y), is used as a function
of similarity and is interpreted as a correlation score between
the probability density of the target model, g, and the canditate
target, p(y).

The term p(y) is spatially smooth due to radially symmetric
kernel usage and plays the role of likelihood, so the maximum
p(y) location in the image indicates the presence of the target.

To find the maximum of p(y) the gradient-based opti-
mization procedure is used. The gradient density estimator is
obtained by the gradient of the density estimator by locally
exploiting the linearity of p(y) by the Taylor expansion around
y [2].

III. THE PROPOSED TRACKER

In recent years, bioinspired algorithms based on populations
of individuals or particles have been used to solve many
types of problems where conventional solutions are difficult
or impossible to be achieved. There are two population-based
approaches, Evolutionary Algorithms and Swarm Algorithms.
The methods based on swarm intelligence have increasingly
attracted researcher’s attention due to the robustness and
flexibility of the results, especially in dynamic environments.
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The PSO algorithm [19] mimics the social behavior ob-
served in a swarm of birds. The learning of particles (birds) is
given in two ways: cognitive learning, based on past individual
experience of each particle, and, social learning, based on the
collective behavior observed in a swarm.

The particles are possible solutions of the problem of
interest and are positioned in the space of solutions. An ob-
jective function, called fitness, assigns a measure of solution’s
quality to each particle. Therefore, the position of the particle
of maximum fitness is considered the best solution to the
problem.

The PSO version used in this work is the Bare Bones PSO,
BBPSO [8] that has two parameters defined by the user: the
number of particles N and the neighborhood topology.

The neighborhood topology affects the way particles prop-
agate the information within the swarm. The global neighbor-
hood topology all particles in the swarm communicate. The
local neighborhood topology each particle communicates with
a predetermined set of particles [20]. In this work the global
neighborhood topology was adopted.

The BBPSO uses a probability density to update the position
of the particles instead of adding a velocity to the position as
it is done in the standard PSO. The equation for updating the
position of the particles in BBPSO is given by

p; = u; +o; OZ, 9
where © is the element by element vector product, and

0.5 (pBestiT_1 + gBestT_l) ,
|pBest] ! — gBest™1,

—
u; =
T
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(10)

with pBest] the position of greatest fitness of particle ¢ up to
iteration 7, gBest”™ being the position of the greatest fitness of
all particles up to iteration 7 and Z is a d-dimensional random
vector with multivariate Normal distribution with vector of
means 0 and matrix of covariances equal the identity matrix
oforderd, I (r=1,2,....nei=1,2,....N).

The proposed tracker, called TBBPSO, estimates the target
in the current frame of all video frames by spreading a swarm
of particles over a region of the image. These particles are
candidate targets and they move in this region in search of the
position of greatest similarity to the target model.

Each particle represents a window [z, y, ], where (z,y) is
an image point corresponding to the center of the rectangular
bounding box representing the candidate target and s; is
a scaling factor that controls the length and height of the
bounding boxes (in number of pixels).

Given a video, TBBPSO seeks to identify the position of
the target in the current frame first by reducing the search
space. Second, N randomly generated particles are scattered
in this reduced search space. Then, the BBPSO algorithm is
executed until the stop conditions are reached. The highest
fitness particle indicates the presence of the target in the
current frame.

The reduced search space is a rectangular region of the
image bounded around the central position of the target
bounding box estimated in the previous frame.

Table I
DESCRIPTION OF THE BENCHMARK VIDEOS
[ Video | Name [T T Challenges |
1 BlurBody 334 SV, DEF, MB, FM, IPR
2 BlurCar2 585 SV, MB, FM
3 BlurFace 493 MB, FM, IPR
4 Bol2 293 DEF, BC
5 Boy 602 SV, MB, FM, IPR, OPR
6 Couple 140 SV, DEF, FM, OPR, BC
7 Dog 127 SV, DEF, OPR
3 MountainBike 228 IPR, OPR, BC
9 Surfer 376 SV, FM, IPR, OPR, LR
10 Twinnings 472 SV, OPR
Total — 3650 -

The fitness of the particles is given by the quadratic distance
Bhattacharyya between the color probability densities of the
model and the candidate targets,

B2 (pi) =1 — p(ps), (11)

where p(p;) is the Bhattacharyya coefficient of the particle p;,
Vi=1,2,...,N.

Here, the Bhattacharyya coefficient is calculated for each
particle and p(p;) is not a spatial function of the local y image
as it is done in Mean Shift.

The TBBPSO uses the density histogram estimator with h
given by equation 4, calculed on the target model.

A second version of TBBPSO uses the kernel density
estimator with h given by equation 7, and to differentiate
from the original TBBPSO, this version is called TKBBPSO.
In this case, since the characteristic space is continuous, the
distance between the targets is calculated in a quantized space
with ng bins. The larger the n; the better the detection of
difference between the probability density and greater the
computational cost. Here, ny = 300 bins.

In this paper, we used N = 25 particles and the stop
condition of the BBPSO algorithm is up to 10 iterations or the
Bhattacharyya distance smaller than 0.005 in both versions of
the proposed tracker.

IV. RESULTS AND DISCUSSIONS

In this section, experimental results on ten randomly
selected benchmark videos in Visual Tracker Bench-
mark/Hanyang are shown and discussed. The Table I lists
the videos and their main features: The number of frames, T,
and the main challenges for tracking: MB indicates blurred
motion, FM indicates fast target movement, IPR indicates
target rotation in the image plane, OPR indicates rotation
of the target outside the plane of the image, DEF indicates
deformation of the object, BC indicates confusion of the target
with the background of the image, SV indicates scale variation
and LR indicates low image resolution [9].

Figure 1 shows the first frame of each video.

Recall (R), Precision (Pr), F; and Pascal (Pa) mea-
surements were adopted to measure the quality of trackers
performance [21]. They measure the percentage of overlapping
of the windows corresponding to the manually marked target
(¢) and the target estimated by the trackers (£). All measures
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Figure 1. The frist frame of each video

range from 0%, for total lack of overlap, to 100%, for total
overlap.

Recall measures how much ¢ is covered by € and is defined
by

where |A| indicates the cardinality of the set A. Similarly,
Precision measures how much ¢ is covered by & and is defined
by

x 100% (12)

Prig.s) = L0

A good tracker has both Pr and R close to 100%, so the
measure I, defined as the harmonic mean between Pr and
R, measures the spatial quality of window overlays and is
defined by

x 100% (13)

_ 2Pr(&e)R(E,¢)
F&e) =5, (€ e)+R(E )

Pascal’s measure determines the overlap of windows as fol-
lows:

x 100%

(14)

[€Nel

Pa(&.e) = 10q)

x 100%

5)

Table 1T

PERFORMANCE MEASURES OF THE TBBPSO

| Video | Pa'D | Pr | R | F; | Pa® ]
1 61.2 842 | 68.6 | 75.1 80.5
2 41.7 60.5 | 51.2 | 54.6 37.4
3 63.5 81.5 | 739 | 772 93.9
4 32.6 474 | 41.1 | 44.0 23.9
5 57.5 T1.1 | 73.5 | 71.7 69.3
6 46.4 67.0 | 52.8 | 58.3 47.9
7 354 36.9 | 83.3 | 50.0 22.8
8 55.3 84.1 | 594 | 69.0 67.1
9 06.9 089 | 08.0 | 08.3 09.3
10 35.9 43.1 | 59.8 | 48.0 29.9
Mean 43.6 58.5 | 572 | 55.6 48.2
Median 44.0 63.8 | 59.6 | 56.5 42.7
Std 17.1 244 | 214 | 204 28.2
cv 39 42 37 37 58

The Pascal and F' measurements are more robust than the
Pr and R measurements since the Pr and R measurements
can assume 100% values in two unwanted situations: When a
tracker estimates the entire frame image as the target, in this
case Pr = 100%, or when the tracker estimates a single pixel
of the marked target, in this case, R = 100%. In general,
Pascal’s measure is used to consider whether a target was
detected and this will be adopted in this work.

The target is considered detected in a given frame if the
Pascal measure exceeds a threshold th. In this work, th =
50%.

All ten videos were used by each of the trackers, and the
target model is the marked object in the first frame of each
video.

An Intel Pentium dual-core processor of 1.86 GHz and 2 GB
DDR?2 was used. The trackers were programmed and executed
using MATLAB. The TMS tracker was executed using the
toolbox developed by Dollar [22]. Each video was run five
times and was obtained the median of the values.

Tables II, III and IV present the results of the experiment
performed, respectively, for the TBBPSO, TKBBPSO and
TMS tracker. In Tables II, III and IV, for each video, Pa(®
is the median value of the variable Pa and Pa(? is the per-
centage of frames detected by the variable Pa. cv represents
the coefficient of variation in percentage values and Std is the
standard deviation of the mean.

For all the trackers, the values observed in Tables II, III
and IV show a remarkable variation of the results, cv ranges
from 37% to 66% of the scale of the variables. This can be
explained by the small sample size and by the different degree
of challenge present in each video.

However, considering the medians of the variables Pa(!),
Fy and Pa(®, the largest percentage difference does not
exceed 13% and this percentage does not reach 6% when the
differences between means are observed. The median analysis
is safer because they are more robust to outliers than meam
ones. This empirical evidence points to a similar performance
of the three trackers.

By observing the coefficients of variation of the variables
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Table IIT
PERFORMANCE MEASURES OF THE TKBBPSO

Video | PaD [ Pr [ R [ F; [ Pa® ]

1 64.0 864 | 71.2 | 77.6 90.1

2 27.1 39.1 | 346 | 363 20.9

3 62.5 76.7 | 76.6 | 76.6 88.6

4 314 40.7 | 40.0 | 40.1 34.5

5 57.7 73.6 | 722 | 72.2 74.6

6 41.1 629 | 47.1 | 53.1 42.1

7 35.0 36.2 | 88.0 | 49.5 22.1

8 14.7 188 | 17.5 | 18.1 15.8

9 20.3 333 | 21.6 | 25.6 23.4

10 38.7 452 | 63.1 | 50.6 29.7

Mean 39.3 513 | 532 | 499 44.2
Median 36.9 429 | 55.1 | 50.1 32.1

Std 17.3 222 | 244 | 20.7 29.0
cv 44 43 46 41 66

Table IV

PERFORMANCE MEASURES OF THE TMS

Video [ Pa™D | Pr [ R [ F; [ Pa® |

1 329 855 | 33.6 | 44.8 24.6

2 21.7 22.1 | 69.2 | 31.2 15.0

3 74.5 89.0 | 83.1 | 84.7 92.3

4 52.8 904 | 582 | 67.5 55.0

5 64.9 783 | 822 | 774 82.7

6 67.1 719 | 798 | 71.8 87.1

7 433 50.6 | 78.5 | 58.5 339

8 11.0 12.8 | 15.7 | 13.8 13.6

9 36.0 64.7 | 41.5 | 45.2 35.6

10 38.3 87.9 | 42.6 | 48.7 35.4

Mean 44.2 659 | 585 | 55.0 47.5

Median 40.8 78.1 | 63.7 | 53.6 35.5

Std 20.5 284 | 239 | 22,6 30.0
cy 46 43 41 41 63

PaM and Pa(® we can observe a variation of 10% in relation
to the scale, this implies a difference in the detection precision
of the windows. In particular, the cv of the TMS is 7% and
5% larger than the cv of TBBPSO for Pa'") and Pa(?,
respectively. The cv of TKBBPSO is 7% and 8% higher
than the cv of TBBPSO and the cv of the TKBBPSO and
TMS trackers are very close for the respective variables. This
indicates a better stability of detection in favor of TBBPSO.

Figure 2 shows the graph of success rate by Pascal thresh-
olds for videos 2 and 8. The x-axis of the graph shows the
Pascal thresholds ranging from 0% to 100% and the y-axis
shows the success rate which is the percentage of video frames
whose ¢ and ¢ have overlaps that exceed the threshold 7.

The curves show the performance of each one of the
trackers (the blue curves refer to the TBBPSO tracker, green
to TKBBPSO and red to TMS) and the more a curve stays
at the top the better the tracker performance.

The TMS and TKBBPSO trackers detected the target in
video 8 in less than 25% of the frames considering any Pascal
threshold while the TBBPSO did not detect the target in
less than 25% of the frames considering Pascal thresholds
greater than 75%. Briefly, TBBPSO was superior to TMS and

Video 2
100 T : r
—*— TBBPSO
—— TKBBPSO
75 —*—TMS J
3 b
o
&
P 50 1
[0}
[$]
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>
@ o5t |
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Pascal Thresholds (%)
Video 8
100%g T T
—*— TBBPSO
—— TKBBPSO

—*k— TMS

Success Rate (%)
(&)
o

. . y L
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Pascal Thresholds (%)

Figure 2. Detection Rate for Pascal thresholds

TKBBPSO for all Pascal thresholds. Also in video 2 TBBPSO
outperformed TMS and TKBBPSO for all Pascal thresholds.

The TBBPSO performed better in scenarios where there
were rotations, scale changes, fast movements and blurred
movements of the target.

In general, in videos where TBBPSO was outperformed
by TMS, the curves remained close to all thresholds. The
analysis of the curves reinforces the fact that TBBPSO is more
stable in tracking different videos, that is, the measures of
Pascal generated by TBBPSO in different videos are more
homogeneous.

To test the performance of trackers, each tracker will be
considered an experimental treatment in which one intends to
measure the effects on the videos (videos are experimental
units). In this case, the results are an achievement of a
randomized block experiment since all units are used in all
treatments.

Since, on average, the sample correlation between Fj and
Pa( is 0.9885 with a standard deviation of 0.0034, there is
no need to test the variable F;. Therefore, a two-way ANOVA
for the Pa'") and Pa(® variables will be done [23].

The nonparametric test y% of Friedman [24] was applied in
the rank variable and if the null hypothesis, Hy, of the equality
of the medians is rejected, Nemenyi Post-hoc tests [25] will
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be applied to the difference variables among all possible pairs.

In both variables Pa") and Pa(?), the test did not rejected
H, at the 5% level of significance. It is not possible to claim
if there is a tracker with superior performance to the others.
Also, it cannot be affirmed that using the kermel for density
estimator improves the identification capacity of the targets
in comparison to the histogram estimator, so it is concluded
that the use of the histogram is more advantageous due to its
simplicity and low computational cost.

V. CONCLUSIONS

The proposed tracker TBBPSO, based on collective intel-
ligence strategy and target color probability density estimated
by the histogram, was able to track any moving target in chal-
lenging scenarios with performance compatible with the Mean
Shift. However, empirical evidence indicates that TBBPSO
produces more stable results for diferents videos among the
trackers surveyed, that is, the measures of Pascal generated by
TBBPSO in different videos are more homogeneous.

The use of the kernel as an estimator of the color probability
density of the targets does not improve the tracker’s ability to
identify targets when compared to the histogram. Therefore,
the use of histogram is more advantageous due to its simplicity
and low computational cost.

Future work will be done to improve the performance of
TBBPSO by testing other isotropic kernels in the spatial
domain and a new adaptive appearance model based on color
densities.
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