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Abstract. In massive multiple-input multiple-output (M-MIMO) sys-
tems, when the number of base station (BS) antennas is much higher
than the number of users, linear minimum mean-square error (MMSE)
detector is able to achieve a near-optimum performance once the M-
MIMO channel presents the property of asymptotic orthogonality. But,
MMSE detector involves matrix inversion that presents high complexity
especially when the number of users increases. In this paper, to avoid
the matrix inversion, we propose a novel near-optimum signal detector
with low-complexity, which is based on the Gram-Schmidt conjugate di-
rection (GSCD) method, which reduces the complexity from O(K3) to
O(K2), where K is the number of users. Numerical results reveal that the
proposed detector has fast convergence and achieves the near-optimum
performance of MMSE detector with a small number of iterations.
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inversion, MMSE detector, BER.

1 Introduction

Massive multiple-input multiple-output (M-MIMO) systems with hundreds of
base station (BS) antennas serving simultaneously dozen of users in the same
bandwidth are considered as an emerging technology for the fifth generation
(5G) cellular networks, due to its high spectral efficiency [8, 1]. Theoretical results
have demonstrated that M-MIMO systems can provide high peak data rates and
increase the spectral efficiency [6, 10]. However, M-MIMO systems faces several
challenging problems in practice. One of which is the practical signal detector
in the uplink.

The optimum signal detector is the maximum likelihood (ML), but it finds
difficulties in practical M-MIMO implementations due to its high complexity [5],
which is exponential with the number of users. On the other hand, linear mini-
mum mean square error (MMSE) detector is able to achieve the near-optimum
performance in M-MIMO systems due to the asymptotic orthogonality channel
matrix property [11]. But, MMSE detector involves matrices inversion, whose
complexity is cubic with respect to the number of users. To reduce the matrix
inversion complexity, the authors of [13] have proposed to obtain an approximate
matrix inversion through the Neumann Series (NS) algorithm. But, NS suffers



2 J. Minango et al.

from significant performance loss when M-MIMO scales up with a marginal com-
plexity reduction [7].

In this paper, the Gram-Schmidt conjugate direction (GSCD) signal detec-
tion for M-MIMO systems is proposed, which avoids the computation of the
matrix inversion and it is superior over NS approach. Besides, we analyze the
complexity and demonstrate that the proposed detector has quadratic complex-
ity with respect to the number of users. Finally, numerical results verify that the
proposed detector is able to achieve the near-optimum performance of MMSE
detector with a small number of iterations.

The remainder of this paper is organized as follows. Section 2 introduces the
uplink of a M-MIMO system and the MMSE detector. The proposed detector
is presented in Section 3. The numerical results of the bit error rate (BER)
performance together with the complexity are shown in Section 4. Finally, the
conclusions are drawn in Section 5.

Notation: Vectors and matrices are represented by lower and upper case
boldface, respectively, a and A. (·)H , (·)−1, |·| and ‖·‖ are conjugate transpose,
matrix inversion, absolute value, and matrix norm, respectively. IN is the N×N
identity matrix.

2 System Model

In this paper, the uplink of a M-MIMO system is considered, which employs
M antennas at the BS to simultaneously serve K single-antenna users, where
M � K [9]. The M × 1 received vector y at the BS antennas is given by:

y = Hx + n, (1)

where x denotes the K × 1 transmitted vector coming from K different users,
H is the M ×K flat Rayleigh fading channel matrix, whose entries consists of
independent and identically distributed (i.i.d.) complex Gaussian random vari-
ables with zero mean and unit variance, and n denotes the M ×1 additive white
Gaussian noise (AWGN) vector, whose elements consists of i.i.d complex Gaus-
sian random variables with zero mean and variance σ2

n by each element. The
detection vector of x can be obtained by MMSE detector as [11]:

x̂ = W−1ỹ, (2)

where ỹ = HHy is the matched-filter output of y, and the MMSE filtering
matrix W is given by:

W = HHH + σ2
nIU . (3)

From (2), the computation of W−1 given by (3) requires cubic complexity
with respect to the number of users, that is O(K3). Thus, the increase of K
in M-MIMO systems leads to larger matrices W that have expensive costs of
inversion.

Recently, [13] has proposed the NS algorithm to replace the matrix inversion
computation with NS expansion. Thus, by using the following decomposition
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W = D + F, where D and F are the diagonal and the off-diagonal matrices of
W, respectively, the NS expansion to compute W−1 can be written as [13]:

W−1 ≈
∞∑
k=1

(
−D−1F

)k−1
D−1. (4)

For k > 3, the NS algorithm complexity is O(K3), which shows that in this
case none complexity reduction is achieved.

3 Gram-Schmidt Conjugate Direction (GSCD) Detector

From (2), the MMSE detector can be interpreted as solving the following linear
equation [11]:

Wx̂ = ỹ, (5)

which can be solved in an iterative way [11, 2].
It has proved in [11] that W given by (3) is an Hermitian

(
WH = W

)
and

positive-definite (xHWx > 0 for all non-zero vectors x) matrix. Thus, by using
these two properties, a novel near-optimum signal detector which is based on the
Gram-Schmidt conjugate direction (GSCD) is proposed. Basically, the GSCD
detector is an efficient iterative algorithm with low-complexity that minimizes
the following quadratic function [4]:

φ (x̂) =
1

2
x̂HWx̂− x̂H ỹ, (6)

where it is easy to show that the minimum value of φ (x̂) is ỹHW−1ỹ/2, achieved
by setting x̂ = W−1ỹ. Thus, minimizing φ (x̂) given by (6) and solving (5) are
equivalent problems.

The GSCD detector computes x̂ iteratively, where each iteration has low-
complexity. The main advantages of GSCD detector is that it converges after
K iterations. However, the GSCD detector can be stopped earlier while still
obtaining a signal detection close to the exact one. This leads to a low-complexity,
as an alternative to compute the matrix inversion of W. Algorithm 1 summarizes
the proposed detector.

From algorithm 1, on line 4, we first compute the matched-filter output ỹ
and the MMSE filtering matrix W. Then, a rough initial solution x̂0 is obtained
by exploiting the diagonal dominant nature of W in M-MIMO systems [11], that
is given by x̂0 = D−1ỹ (see line 5). Obviously, the complexity to invert D is
very small. Later, on line 6, we initialize the residual error vector r0 and the
direction vector d0 used in the GSCD iterative procedure.

On lines 8-14, the GSCD iterative procedure is employed, where a variant
of the well-known Gram-Schmidt orthogonalization procedure [4] is used to find
the W-orthogonal search direction vector dk, where W-orthogonality means
that dHi Wdj = 0, ∀j < i. Once a suitable dk is found, a step in that direc-
tion is taken as x̂k+1 = x̂k + βkdk (see line 10), whose residual error vector
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Algorithm 1 The GSCD signal detector

1: input:
2: H and y
3: initialization:
4: ỹ = HHy, W = HHH + σ2

nIK and D = diag (W)
5: ŝ0 = D−1ỹ,
6: r0 = ỹ −Wŝ0, and d0 = r0
7: k = 0
8: while k ≤ K do

9: βk =
dH
k

rk

dH
k

Wdk

10: x̂k+1 = x̂k + βkdk

11: rk+1 = rk − βkWdk

12: dk+1 = rk+1 −
∑k

i=1

rH
k+1

Wdi

dH
i

Wdi
di

13: k = k + 1
14: end while
15: output:
16: ŝK

rk is minimal. Then, the next search direction vector dk+1 is computed by ap-
plying the Gram-Schmidt orthogonalization step to rk (see line 12). Note that
dk+1 is linearly independent from all the other previous search direction vectors.
Thus, the sequence {x̂0, x̂1, . . . , x̂K} is generated, where x̂K is the decision of
the transmitted vector x after K iterations (see line 16).

Since the K search direction vectors {d0,d1, . . . ,dK} span the whole vector
space, the GSCD iterative procedure always converges at most in K iterations
[4]. However, usually the GSCD iterative procedure can be terminated before K
iterations.

3.1 Convergence rate

It has been demonstrated in [12] that the convergence rate of GSCD iterative
procedure mainly depends on the condition number of W. Since W is an Her-
mitian positive-definite (HPD) matrix, which means that the condition number
of W is given by:

κ =
λmax (W)

λmin (W)
, (7)

where λmax (W) and λmin (W) represent the largest and the smallest eigenvalues
of W, respectively. Thus, if we assume that x̂K is the accurate final solution of
x̂, then, the error at the k-th iteration can be denoted as:

‖x̂K − x̂k‖W ≤ 2

(√
κ− 1√
κ+ 1

)k
‖x̂K − x̂0‖W , (8)

where ‖q‖W =
√
Wq · q.
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From (8), we note that the convergence rate increases as the condition number
of W approaches to one due to the error at the k-th iteration is principally

influenced by the parameter 2
(√

κ−1√
κ+1

)k
.

Besides, note that to compute (8), it is necessary to know a priori λmax (W)
and λmin (W) which is difficult in practice. However, by taking into consideration
the asymptotic orthogonality channel matrix property, a tight upper bound of
(8) can be obtained as we show in Lemma 1.

Lemma 1. In M-MIMO systems, the error produced by GSCD detector at the
k-th iteration can be upper bounded by:

‖x̂K − x̂k‖W ≤ 2

(
1√
α

)k
‖x̂K − x̂0‖W , (9)

where α = M/K.

Proof. Since W follows a Wishart distribution. Let α being the loading factor.
As M and K grow, the largest and the smallest eigenvalues of W converge,
respectively, to [3]:

λmax (W)→M

(
1 +

1√
α

)2

and λmin (W)→M

(
1− 1√

α

)2

. (10)

Substituting (10) into (7) and applying it into (8), we have that
(√

κ−1√
κ+1

)
≤(

1√
α

)
, consequently the error produced by GSCD detector at the k-th iteration

is upper bounded by (9), which completes the proof.

From Lemma 1, we can note that when α increases, (9) decreases, thus, a
faster convergence rate is achieved. Therefore, GSCD detector is ideal for M-
MIMO signal detection. Fig. 2 compares the theoretical and upper bound of the
error given by (8) and (9), respectively, against α. We note that the upper bound
is very tight especially when α increases.

4 Simulation Results

4.1 BER performance

In order to evaluate the performance of the proposed detector, the simulation
results of the BER against the average received signal-to-noise ratio (SNR) are
present, which are compared with the recently NS iterative detector [13]. Be-
sides, the BER of MMSE detector employing matrix inversion is also included
as benchmark. Two typical M-MIMO systems with M × K = 128 × 16 and
M ×K = 256×16 are considered. The 64-QAM modulation scheme is employed
on both M-MIMO systems. Besides, we assume that the channel has Rayleigh
fading components which are perfectly known at the BS.
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Fig. 1: Comparison between the theoretical and upper bound of the error against
the loading factor α = M/K.

Fig. 2a shows the BER comparison between NS and GSCD iterative detec-
tors for the M ×K = 128 × 16 M-MIMO system where k denotes the number
of iterations. From this figure, it is evident that the BER of both detectors
improves with the number of iterations. However, for same k, the GSCD de-
tector outperforms NS detector, which reveals that a faster convergence rate is
achieved by the proposed detector. Observe that with only 3 iterations, the per-
formance loss of GSCD detector compared to MMSE detector is within 0.1 dB
for a BER = 10−4. Thus, GSCD detector is able to achieve the near-optimum
performance of MMSE detector.

Fig. 2b compares the BER between NS and GSCD iterative detector when
the M-MIMO system is M ×K = 256× 16. By comparing Fig. 2a and Fig. 2b,
we note that when M increases, a better BER performance is obtained by both
detectors. For example, when k = 3, for the M×K = 128×16 M-MIMO system,
NS detector presents a BER floor at 10−2, while for the M ×K = 256× 16 M-
MIMO system, it achieves a BER floor at 10−5. Note that NS detector does not
converge in both M-MIMO systems. In contrast, when k = 3, the BER loss of
GSCD detector compared to MMSE detector is within 0.1 and 0.01 dBs for a
BER = 10−4 for the M × K = 128 × 16 and M × K = 256 × 16 M-MIMO
system, respectively. This shows that the convergence rate of GSCD detector is
more robust with respect to the M-MIMO scales. Furthermore, given the same
number of iterations, its superiority grows as the loading factor α increases.

4.2 Computational complexity

To analyze the complexity of GSCD detector, we use the term ”flop” to mean
a multiply-add operation. Since the matched-filter output ỹ and the MMSE
filtering matrix W need be computed both by MMSE detector given by (3) and
by the proposed detector (see line 4), we only focus on the complexity of the



Massive MIMO detector 7

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

SNR in [dB]

B
E
R

 

 

NS iterative [8] , k = 1

NS iterative [8] , k = 2

NS iterative [8] , k = 3

GSCD iterative, k = 1

GSCD iterative, k = 2

GSCD iterative, k = 3

MMSE with matrix inversion

(a)

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

SNR in [dB]

B
E
R

 

 

NS ite rat ive [8], k = 1

NS ite rat ive [8], k = 2

NS ite rat ive [8], k = 3

GSCD ite rat ive , k = 1

GSCD ite rat ive , k = 2

GSCD ite rat ive , k = 3

MMSE with matr ix invers ion

(b)

Fig. 2: BER as a function of SNR for M-MIMO systems with (a) M × K =
128× 16, (b) M ×K = 256× 16, where k denotes the number of iterations.

GSCD iterative procedure. Thus, from algorithm 1, we clearly notice that the
proposed detector (lines 8-14) involves matrix-vector multiplications. Therefore,
the required total number of flops is:

C = k
[
K2 + 2K + k (2K + 1)

]
−K ∼= O

(
kK2

)
, (11)

where k is the number of iterations.

Table 1: Computational complexity comparison
Number of NS iterative Proposed detector
iterations algorithm [13] based on GSCD method

k = 1 2K K2 + 3K + 1
k = 2 12K2 − 4K 2K2 + 11K + 4
k = 3 8K3 + 4K2 − 2K 3K2 + 23K + 9
k = 4 16K3 − 4K2 4K2 + 39K + 16

Table 1 presents the complexity in terms of flops for both NS [13] and GSCD
detector. It is well known that the complexity of MMSE detector with matrix
inversion is O(K3). On the other hand, Table 1 shows that NS detector can
reduce the complexity from O(K3) to O(K2) when k ≤ 2. However, when k ≥ 3
the complexity is O(K3), which indicates that none complexity gain can be
achieved in relation to MMSE detector. Furthermore, Table 1 shows that the
complexity of GSCD detector is O(kK2) for any arbitrary number of iterations
k.
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5 Conclusion

In this paper, due to the MMSE filtering matrix in M-MIMO system is Hermitian
and positive-definite, we have proposed a novel low-complexity signal detector
for M-MIMO uplink, which approach is based on the Gram-Schmidt conjugate
direction (GSCD). We have shown that GSCD detector can reduce the com-
plexity from O(K3) to O(kK2). Numerical results reveal that GSCD detector
achieves the near-optimum performance of MMSE detector with a small num-
ber of iteration. In addition, GSCD detector outperforms the Neumann series
detector in terms of performance and complexity.
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