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Abstract—It is known that chaotic systems have widely been
used in cryptography. Generally, floating point simulations
are used to generate pseudo-random sequence of numbers.
Although, it is possible to find some works on the degradation of
chaotic systems due to finite precision of digital computers, little
attention has been paid to exploit this limitation to formulate
efficient process for image encode. This article proposes a novel
image encryption method using natural interval extensions. The
sequence of arithmetic operations is different in each natural
interval extension. This is what we need to produce two different
sequences; the difference between these sequences is used to
generate the lower bound error, which has been shown to
present satisfactory pseudo-random properties. The approach
has been successfully tested using the Chua’s circuit as the
chaotic system. The secret key has presented good properties
for encrypting the Lena image.

Index Terms—Image encryption, Natural interval extensions,
Lower bound error, Chua’s circuit.

I. INTRODUCTION

It has been an integral part of human nature to main-
tain control of the access to information. For this reason,
encryption has received such attention over the past few
years. For example, encryption takes place in bank and
cryptocoins transactions [1]. Additionally, this area has such
importance in image encryption [2]. In Computer Science
and Electrical Engineering fields, more robust and effective
encryption methods have emerged as demonstrated by the
linear congruential method [3], by the use of irrational
numbers [4] and also for chaotic systems [5].

Chaotic dynamical systems present interesting properties
as its transitivity, the high density of the periodic points of
the function f in metric space and its sensitive to initial con-
ditions [6], [7]. Therefore, these systems can generate pseudo-
randomness sequences, which can be used in cryptography.
In fact, Herring e Palmore [8] have already told that pseudo-
random number generators are examples of deterministic
chaotic dynamical systems.
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In the information security area, chaotic systems have
been vastly studied and several methods have been emerged.
Fridrich [9] used only the chaotic properties of the baker
map; Ismail et al. [10] added two parameters to the classical
fractional logistic equation to improve its flexibility and con-
trol; and Zhang [11] used the hyper-chaotic Chen’s system,
diffusion and shuffling operations to encrypt images. One
of the key problems faced by researchers in this area is
the degradation of chaotic systems due to finite precision of
digital computers, as reported by Li et al. [12]. The last few
years many attempts have been investigated to overcome this
problem, such as the use of high finite precision, cascading
multiple chaos systems, switching multiple chaos systems,
coupling different chaotic systems or pseudo randomly per-
turbing the chaotic system. The reader is invited to read the
work by Cao et al. [5] for more information on these methods.

Although, many researchers have succeed to reduce the
degradation of the chaotic properties of digital systems, little
attention has been paid to exploit this limitation to formulate
encryption algorithms. Instead of seeing the finite digital
precision as a problem, this paper proposes a novel image
encryption method using natural interval extensions. When
solving a chaotic system by means of numerical computation,
it is verified that, based on two natural interval extensions (for
more details, see section II-C), starting from the same set
of parameters and initial conditions, after a certain number
of iterations, the results of each simulation of the system
diverge. Such an event could not occur due to the exactly
equal initial sets of parameters and conditions for each sim-
ulation. This happens because of the constructive limitations
of computers and the IEEE 754-2008 floating point standard
[13]. As observed in [14], [15], the sequence of arithmetic
operations is different in each natural interval extension. This
is what we need to produced two different sequences to
generate the lower bound error, which has been shown to
present satisfactory pseudo-random properties.

This paper is developed as follows: a brief introduction,
followed by a bibliographic review was presented in this



Fig. 1. (a) Chua’s circuit. (b) Chua’s diode curve. Ga, Gb and Bp are the slopes and the breaking points of the nonlinear element, respectively.
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section. Section II points out important concepts for under-
standing the rest of the text. The methods used in this work,
as well as the results, are shown in Sections III and IV,
respectively. Finally, section V contains the conclusion of the
paper.

II. PRELIMINARY CONCEPTS

A. Chua’s circuit
The circuit developed by Chua et al. [16], exhibits non-

linear behaviour, such as a spiral attractor and double-scroll
attractor. Since then, this circuit (Fig. 1) has been extensively
studied and simulated computationally. The circuit is com-
posed by linear passive elements: two capacitors, an inductor
and a resistor, which are connected to an active, nonlinear
element called the Chua’s diode (Nr), as shown in Fig. 1a.
Therefore, according to Kirchhoff’s law, it is possible to
obtain the differential equations which represents the circuit’s
dynamic, (1). The resistive effect of the inductor is considered
as imperceptible. The current through the nonlinear element,
iR(vC1) is given by (2). Fig. 1b displays the nonlinear
behaviour of the Chua’s diode, given by the relation voltage
x current of the component.

B. Lyapunov Exponent
There are many definitions about chaos. However, the

concepts of Lyapunov exponents are the most influential
work present in literature. The Lyapunov Exponent (LE),
is a method which quantifies the exponential divergence of
initially close orbits. The presence of a positive LE indicates
chaos. In literature, there are numerous methods to determine
the LE, as the Kantz’s method [17], for example. In Kantz’s
approach, he considers the following equation:

S(∆n) =
1

N −m

N∑
n=m+1

×ln

 1

|ηn|
∑
xn′ εηn

|xn′+∆n − xn+∆n|

 (3)

where ηn is the set of all others delay vectors in an ε-
neighborhood of the vector xn (data from trajectories of
the system under investigation) and |ηn| is the number of
elements in ηn. The Lyapunov exponent can be estimated by
searching for a linear scaling in plot S(∆n) versus ∆n [18].

By the characteristics mentioned above, it is possible to
relate the importance of this topic in cryptography. Since the
system (Chua’s circuit) used to encrypt the image is chaotic,
the process of decryption, without knowing the seed and the
secret key is computationally expensive, making it a difficult
task.

C. The lower bound error

The lower bound error is used to analyze the error propaga-
tion in numerical simulations [15]. For the understanding of
this tool, orbits, pseudo-orbits and natural interval extensions
are defined in this section.

Definition 1: an orbit is a sequence of values of a map or
system, represented by xi = [x0;x1;x2;x3...xi].

Results of numerical simulation, due to truncation and
rounding errors, inherent of a computer, cannot fit into a true
orbit, therefore they are called pseudo-orbits.

Definition 2: a pseudo-orbit is an approximation of the true
orbit, represented by x̂i = [x̂0, x̂1, x̂2, x̂3...x̂i] which accepts
the relation |xi − x̂i| ≤ δ, where δ is the associated error.



As described by Nepomuceno and Martins [14], a natural
interval extension is defined:

Definition 3: a natural interval extension of a function f
is an interval-valued function F of an interval variable X ,
with the property F (x) = f(x), where by an interval it is
meant to be a closed set of real numbers x ∈ < such that
X = [X,X] = x : X ≤ x ≤ X .

Using the Chua’s circuit equations, examples of natural
interval extensions are shown by (4) and (5).
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− vC1
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The lower bound error is established by the following
definition:

Definition 4: given two pseudo-orbits x̂a,n and x̂b,n,
arising from two different natural interval extensions of the
function f(x), the lower bound error δ is given by:

δ =
|x̂a,n − x̂b,n|

2
. (6)

D. Cryptography

Cryptography is the science which studies techniques to
make data illegible. In this way, it is possible to transmit all
information securely. To perform the decryption, one should
be aware of cryptographic key [19].

The encryption and decryption can be done using the bit-
wise XOR operation, because the probability of the XOR
output being zero or one is 50% and by the following
propriety: (A ⊕ B) ⊕ B = A ⊕ 0 = A. In other words,
using the cryptographic key B twice in the document that
you want to encrypt A, the result remains A. This property
represents the entire cryptographic process.

To ensure that the encryption process is good enough to
make the image illegible, there are several ways to testify
this: the correlation coefficient of adjacent pixels randomness
test, the Shannon entropy test and the distribution of pixel in
an image plotting an histogram. In a histogram, when the
encryption process is performed, the cipher image must be
uniform, in other words, the frequencies of the pixels must
be approximately equal to all color intensities. So doing, the
cipher image does not bring any relevant information.

It is well known that in plain-images, the adjacent pixels
are strongly correlated with each other. Therefore, in a cipher
image, the correlation coefficient in horizontal, vertical and
diagonal directions are expected to be close to zero. The
correlation coefficient of adjacent pixels randomness test
measures this correlation by (7) [20].

ρ(X,Y ) =
E[(X − µX)(Y − µY )]

σXσY
(7)

where X represents the series of pixels at position, Y
represents the series of adjacent pixels, µ and σ are the mean
and the standard deviation values, respectively, and E is the
mathematical expectation.

The Shannon entropy is a tool to measure the randomness
in a communication systems. It is defined by (8) [21]:

H(X) =

2N−1∑
i=1

Pilog2
1

Pi
(8)

where H(X) is the entropy (bits), X is a symbol and Pi is
the probability value of symbol X .

In image encryption, there are 256 values that each pixel
can be defined. Therefore, for a cipher image, the expected
value is H(X) = 8 bits.

III. METHODOLOGY

A fundamental part of the method is the cryptographic
key, which is the pseudo-randomness sequence. The sequence
is generated simulating the Chua’s circuit using the fourth
order Runge-Kutta method, an integration step equal to 10−6

and the most important, the two natural interval extensions
presented by (4) and (5) (see section II-C). This system has
been chosen to apply the method, because it is a benchmark
in the study of dynamical systems and the most important, its
chaotic properties. The following Chua’s parameters was used
to generate the two pseudo-orbits: C1 = 10nF , C2 = 100nF ,
L = 19mH , R = 1.8kΩ, Ga = −0.68mS, Gb = −0.37mS,
Bp = 1.1V , VC1 = −0.5V , VC2 = −0.2V , IL = 0A.
Afterwards, to encrypt an image, we have used the following
steps, adapted from [5]:

• Step 1: For an image with M ×N pixels, perform two
simulations with different natural interval extensions of
the Chua’s circuit with 2000+M×N−1 iterations. The
first 2000 points generated will be discarded. This is due
to the fact that at the beginning of the simulation, the
two pseudo-orbits are close to each other, making the
generated sequence easy to identify. We have chosen
2000 points according to the critical time simulation
described in [22].

• Step 2: After the two sequences S1 and S2 generated,
the logarithm of the lower bound error is done, gener-
ating a single sequence S:

S = log10
|S1 − S2|

2
. (9)

• Step 3: The normalizing process of the sequence S is
done as follows:

Sn = uint8(mod(S × 1015, 256)), (10)

which Sn is the normalized sequence. Uint8 is an
algorithm available on the latest release of the software
Matlab, which converts the sequence into 8-bit positive
integer and mod represents the modulo operation: the
rest of the division S × 1015 by 256. This is necessary
as tested images are 8-bit gray using a pixel matrix with
number between 0 (black tone) and 255 (white tone).

• Step 4: With the key Sn and the media to be encrypted
in the same numeric format, the bit-wise XOR operation
is performed.

The standard gray 256×256 Lena image was used to assess
the algorithm performance. All data, routines and simulations
used in this work were generated using the Matlab software
and are available upon request.
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Fig. 2. The plain-image Lena as well as the cipher image herewith their histograms.
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Fig. 3. The lower bound error obtained from two interval extensions.

IV. RESULTS AND DISCUSSION

The lower bound error, which is obtained from the pa-
rameters specified in the previous section, is shown in
the Fig. 3. The two natural interval extensions used are

C1
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dt
=
vC2 − vC1

R
−iR(vc1) and C1

dvC1

dt
=
vC2

R
−vC1

R
−

iR(vc1). The LE (λ) was calculated by the Kantz’s method,
which resulted in a positive value equal to λ = 0.199,
demonstrating its chaotic behavior and pseudo-randomness.

The Lena image was encrypted, after all the steps per-
formed. Fig. 2 shows the plain-image and the cipher image

along with their respective histograms. The original Lena
image features a non-uniform distribution in the graphic.
However, when it is encrypted, the histogram features a
uniform distribution, which each color intensity level has the
same frequency, approximately, becoming an illegible image.
It is worth noting that with the decryption process, the image
becomes legible again, as shown in Fig. 4.

The entropy test and correlation between two adjacent
pixels was executed and the results were slightly close to
the expected value (see Table 1).

TABLE I
TESTS FOR THE CIPHER IMAGE

Correlation Coefficient Entropy References
Horizontal Vertical Diagonal

0.0028 0.0059 0.0031 7.9969 This work
0.0016 0.0025 0.0003 7.9998 C. Li et al. [23]
0.00083 0.00223 0.00650 7.9826 Y. Luo et. al [21]

V. CONCLUSION

In this paper, a novel image encryption method has been
presented. This method is based on the concept of natural
interval extension and the fact of limitation of numerical
representation presented on computers. The proposed method
was very efficient, producing a pseudo-random sequence
with good cryptographic properties and encrypting the Lena
image. The entropy measure and the correlation coefficients
calculated using our approach has been shown to be as
efficient as other works presented in literature. Furthermore,
it is important to emphasise that the method evidence the
random characteristic of the error.



Fig. 4. By performing the bit-xor operation twice, the encryption and decryption process of an image is made, which represents the entire cryptographic
process.

As a future work, the authors propose the study and the
accomplishment of other tests, with the intention of analysing
the computational performance and improving the proposed
method, also constructing an embedded system for the use
of cryptography in the most diverse fields.
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