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Abstract. Position and orientation of an IMU can be obtained by the
process known as dead-reckoning, which consists of mathematical oper-
ations on the measured inertial data. Ideally, this process would provide
exact results. In practice, difficulties arise from a great number of vari-
ables involved. As can be assessed from literature review, lots of efforts
have been made to deal with this complex problem; on the other hand,
a more holistic and didactic approach is rare to be found. This work
proposes an organized overview of the error sources affecting the mea-
surement result, as well as the clarification of some relevant terms. Ad-
ditionally, a dead-reckoning algorithm is presented, including a minimal
data-processing package that has shown to bring significant benefits to
the performance while keeping a more generalist character. We believe
that these contributions lay useful foundations for further studies on the
matter.
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1 Introduction

Microelectromechanical systems (MEMS) own attractive characteristics such as:
low size and weight (therefore portability), affordable cost and no need for a line-
of-sight between the sensor and the object under measurement. Owing to these
characteristics, MEMS-type inertial sensors have become ubiquitous in many
fields of applications, including localization (indoor- and outdoor positioning),
navigation, health care and sports (motion tracking of humans), consumer elec-
tronic products (e.g. tablets and smartphones), among others [24, 13].

A set of inertial sensors in a unit is called an inertial measurement unit
(IMU). A six-degree-of-freedom IMU comprises a triad of mutually orthogo-
nal accelerometers and a triad of mutually orthogonal gyroscopes, both triads
sharing the same origin; additional sensors and other electronics are commonly
included [1].
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Position and orientation of an IMU can be obtained by the process known
as dead-reckoning (DR): mathematical operations on the measured inertial data
(i.e. linear accelerations and angular velocities) yield changes in orientation and
position of the sensor. Ideally, the dead-reckoning process would provide exact re-
sults; in practice, difficulties arise from limitations of the sensors, data-processing
steps and also from experimental scenario [5, 6, 20, 31, 13]. Although noise is
known to be the most critical problem inherent to IMUs, the exact mechanism
with which it is reflected on the accuracy of calculated pose is still not completely
clear due to the number of variables involved.

Dead-reckoning utilizing MEMS-type IMUs is of high interest to the indus-
trial and academic communities. For example, [25] developed a system based on
a multi-sensor platform for reconstructing motorcycle trajectories; [16] proposed
an instrument for surveying underground pipelines; [23] explored the credibility
of using MEMS-IMUs for complementing existing systems on board Dynamic Po-
sitioning Vessels; [33] described a kalman filter-based framework to estimate pose
and traveling speed of a welding torch; [34, 30] proposed solutions for pedestrian
dead-reckoning problems; recent research advances make use of deep learning for
performing IMU-based dead-reckoning [6, 12, 4, 17]. As can be assessed from the
literature review, lots of efforts have been made to deal with this complex prob-
lem in many contexts; on the other hand, a more holistic and didactic approach
is rare to be found. This work intends to share an approach to the problem
of measuring the pose of six-degree-of-freedom MEMS-IMUs using the dead-
reckoning principle. These findings result from deep literature review as well as
from experience gained from experimentation with real data. Contributions in-
clude a comprehensive overview of the main factors affecting the measurement
and a stepwise data-processing implementation.

Section 2 presents an organized overview of the sources of error that affect
the measurement results; section 3 presents the proposed data processing steps;
in section 4 two application examples using real experimental data are presented,
followed by the conclusions in section 5.

2 Summary of errors sources

For the purpose of organization, we classify the main error sources into two
categories: error sources inherent to the sensor ; and those related to the mea-
surement task and data acquisition and processing. We remark that this is not
an exhaustive list of the error sources, but of the most relevant ones.

Error sources inherent to the sensor

Scale factor is the relation between input signal variations and output signal
variations; Scale factor error is the deviation of the input-output gradient
from unit; Scale factor repeatability refers to changes in scale factor that
occur between periods of operation.
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Orthogonality errors occurs when any of the axes of the sensor triad
deviates from mutual orthogonality. It implies cross-coupling effects

Drift results from the integration of an uncompensated bias. An accelerom-
eter bias will introduce an error proportional to time t in the calculated velocity
and an error proportional to t2 in the position due to the integration of the sig-
nal. Similarly, in the case of gyroscopes, an uncompensated bias will introduce
an error proportional to t in the calculated angle [1]. This time-growing error
can be called a drift due to bias, i.e. the result of integrating an uncompensated
bias in the sensor output.

Bias in MEMS might vary slowly with time within a run, which is called
bias instability, defined by the standard [10] for both accelerometer and gy-
roscope as “the random variation in bias as computed over specified finite sample
time and averaging time intervals. This non-stationary process is characterized
by a 1/f power spectral density”. In other words, in MEMS sensors, the bias
wanders over time as a result of flicker noise.

Bias might also vary between runs (from turn-on to turn-on). This is repre-
sented by the bias repeatability, which quantifies the changes in bias that
occur between specified periods of operation [9].

Random Walk can be explained as follows: using the rectangular rule, nu-
merical integration of sampled white noise is mathematically expressed by equa-
tion 1 [11]:

xk+1 = xk + wk · δt (1)

where: xk represents the value of the random walk at time instant k; wk is the
sampled white noise; δt is the sampling interval (inverse of acquisition frequency,
fs).

White noise in MEMS is properly modeled as a normal random variable dis-
tributed as wk ∼ N(0, σ2) [11]. For an integration time t = n δt, the resulting
random walk, i.e. the cumulative sum of sampled white noise, is a random vari-
able with zero mean and variance which grows proportionally to integration time
t (equation 2):

V (

n∑
xk) = V (

n∑
wk δt) (2)

= (δt)2 · V (w1 + w2 + · · ·+ wn)

= (δt)2 · n · σ2 = (δt)2 · t

δt
· σ2

= δt · t · σ2

In the case of gyroscopes, integration of white noise causes a first-order ran-
dom walk known as angle random walk ; similarly, in the case of accelerometers,
it causes a first-order random walk in velocity known as velocity random walk,
and a second-order random walk3 in position.

3The result of integration of a first-order RW.
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Error sources related to the measurement task and data acquisi-
tion and processing

In addition to those related to the sensor, other aspects will influence the
error in position obtained by dead-reckoning of inertial measurements, as has
been pointed out in the works from [27, 15, 5, 20, 28, 2]. We divide these aspects
in two groups: aspects related to the measurement task and those related to data
acquisition and processing.

The former group includes complexity and experimental conditions of each
measurement task such as: motion intensity (fast or slow translations or rota-
tions); existence of vibrations or jerky motions; duration of measurement.

The latter includes: sampling frequency; sensor fusion algorithm (orienta-
tion algorithm); numerical integration scheme (rectangular rule, trapezoidal rule,
etc.); various other data processing techniques such as high/low-pass filters, mo-
tion detection, bias compensation, et cetera.

It is important to stress that there might be interaction between the afore-
mentioned factors. Given the complexity of this scenario, an exhaustive analysis
of the influence of each factor is virtually impossible. The goal of this summary
is to provide an organized overview of the main aspects affecting the error in
position. This overview is illustrated in Figure 1.

Fig. 1: Main sources of error in position measured by dead-reckoning with
MEMS-type IMUs.
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3 Dead-reckoning algorithm

The dead-reckoning algorithm implemented in this work consists of two blocks:
first, orientation is obtained by an adaptation (slightly modified) of a well-known
open-source algorithm from [18], the “Madgwick Algorithm”; then accelerations
are double integrated using rectangular rule to yield position.

Characteristics such as low computational cost, good levels of accuracy and
easy tuning have made the Madgwick Algorithm widely acknowledged “as having
had a disruptive impact in inertial measurements” [29] — indeed, it is commonly
used as a benchmark when evaluating other SFAs [19]. The algorithm employs
a quaternion representation of orientation to describe the coupled nature of ori-
entations in three-dimensions and is not subject to the problematic singularities
associated with an Euler-angle representation. A constant-gain filter - called
Gradient Descent Algorithm - is adopted to estimate the attitude of a rigid
body in quaternion form by using data from a IMU (or MARG) sensor: a first
quaternion estimation is obtained by gyroscope output integration and then it
is corrected by a quaternion from the accelerometer (and magnetometer) data
computed through a gradient descent algorithm. The fusion process is governed
by a unique parameter (β). The choice of β depends on the magnitude of error
expected due to integration of gyroscopes’ noise. It can be defined according to
equation 3 [18, 14]:

β =

√
3

4
· σω (3)

where σω is the standard-deviation of white noise in the gyroscopes.

A low value of β gives more weight to the gyroscope measurements; in turn,
a high β gives more weight to accelerometers (magnetometers) measurements.
The combination of sensors allows the gyroscope to track orientation during
high frequency motion while gyroscopic drift is compensated during low fre-
quency motion using the gradient descent steps.

Additional processing techniques

In order to provide meaningful DR results, some additional signal processing
techniques were included, intending to be up-to-date with the state-of-the-art,
as simple and generic as possible and without artificial manipulation of the
measured data. The techniques are:

– Integration of signal is carried out only when the IMU is submitted to ac-
celeration due to motion;

– Residual (fixed) bias is estimated and compensated;

– White noise is filtered by means of a wavelet filter;

– Adaptive gain for the sensor-fusion algorithm.
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Integrate only during motion periods:
Since the integration of measurement errors such as noise and uncorrected

biases causes the error in dead-reckoning to rapidly accumulate with time, it
does make sense to perform integration only when there is motion of the IMU.
Thus, a strategy to identify motion and stationary periods is applied in order to
avoid unnecessary error accumulation.

We implemented a strategy that is grounded in the work from [21]. It is based
on the variance of the magnitude of acceleration. First, magnitude of acceleration
is calculated for each time stamp i as in equation 4:

fmag,i =
√
f2
x,i + f2

y,i + f2
z,i i = 1, ..., N. (4)

where: fx,i, fy,i, fz,i are the outputs from the accelerometers triad for x, y and
z axis, respectively; N is the total number of measurements.

Then, the variance of magnitude is obtained 5:

V̂fmag,j
=

1

n− 1

N−n∑
j=n+1

(fmag,j − f̄mag,j)
2 (5)

where: V̂fmag,j
is the variance of the magnitude of acceleration for each sample

j; n is the sample size for variance calculation; f̄mag,k is the magnitude average
of each sample.

The moments corresponding to motion are determined by comparing V̂fmag,j

with a threshold, which is defined by trial-and-error. We use the average of
initial stationary data (few seconds) as a basis for defining the threshold in this
trial-and-error process.

Bias estimation and compensation:
At this point, it has become evident the importance of estimating and com-

pensating biases in the MEMS sensors’ outputs. In the case of gyroscopes, it
can be done by simply averaging a set of measurements while the sensor is at
rest; in the case of accelerometers, it is not so straightforward, since they sense
acceleration due to gravity all the time.

For that matter, this work has implemented the method proposed by [26],
which is based on a multi-position scheme: for the accelerometer triad, the total
specific force measured in any orientation of a stationary IMU should be equal
to the magnitude of local gravity. The IMU is then moved to a set of different
and temporarily static orientations. From this, the following cost function G(X)
is derived (equation 6):

G(X) =

N∑
k=1

(
∥h(fm,AV,X)∥2 − ∥g∥2

)2

(6)

Where: N is the number of different orientations (static intervals); fm,AV is
the average of measured specific force during each static interval; X is a vector
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containing bias terms (and other parameters) to be found; ∥g∥ is the magnitude
of the local gravity vector.

The bias terms and other unknown parameters are found by minimizing the
cost function G(X).

White noise filtering:
White noise is one of the main issues that affect the performance of IMUs.

Wavelet filters are well-suited for filtering this kind of noise, as has been shown
in the works from [25], [8], [22] and [3]. Its main advantageous characteristics
are:

– Ability of denoising a signal without appreciable degradation of the original
signal

– Ability of denoising complex signals far better than conventional filters that
are based on the Fourier transform;

– Efficiency in removing noise where the noise and signal spectra overlap;
– Little or no phase shifting of the original signal.

A wavelet is a wave-like function with an amplitude that starts and ends at
zero, which is used to transform the signal to the wavelet domain. It acts as
a window function that moves forward in time. The chosen wavelet is called
wavelet mother, and there are infinite choices for it. Examples of typical ones
are: Daubechies, Meyer and Coiflet. The main idea behind the wavelet filter is
decomposing a signal into different scales which can be considered as frequency
bands [7]. This decomposition is done by a set of consecutive low- and high-pass
filters, which are determined by the wavelet mother.

Intending to reduce the effects of the white noise present in the IMU’s out-
puts, we include a wavelet filter processing on the whole set of measured data
before performing the dead-reckoning.

Adaptive gain for the SFA:
The SFA used in this work (Madgwick Algorithm) has one adjustable filter

parameter, β, whose function is to give more or less weight to gyroscopes’ mea-
surements in the fusion process. Depending on the dynamics of measurement
task, data from different sensors may be more or less reliable. Thus, instead
of using a unique constant value of β for the whole dataset, it is beneficial to
adaptively set its value, according to the dynamics of the motion [32, 20, 5].

We implemented a strategy based on the work from [32]. Switching logics
are based on system dynamics sensed by the accelerometers to yield improved
performance of the SFA. In brief, the scalar dynamic acceleration, αacc, is defined
as in equation 7:

αacc =

∣∣∣∣∥f∥ − ∥g∥
∥g∥

∣∣∣∣ (7)
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where: αacc is the scalar dynamic acceleration, in units of g; ∥f∥ is the norm of
the specific force vector (accelerometers measurements) and ∥g∥ is the magni-
tude of local gravity.

Distinction between low and high dynamics is done by comparing αacc with
a threshold, αthreshold, which is determined empirically.

If the IMU is under high dynamics, accelerometers become less reliable for the
orientation calculation, so a lower value of β should be used. Since we chose an
IMU implementation (i.e. no magnetometers), we give full weight to gyroscopes
in this circumstance. The implemented switching-logic is:

– If αacc > αthreshold, β = 0;
– Else, β holds its predetermined value.

4 Experimental Results

We present two application examples of the proposed approach. First one consists
of an original experiment and the second uses data from the dataset published
by [15]. All algorithms have been developed in the GNU Octave programming
language.

4.1 Application Example 1

The IMU is a XSens-MTi-G-700. Data acquisition was made by means of the
XSens MT Manager software and a personal computer.

A Romi D-600 CNC machining center has been used to move the IMU and
also for providing ground truth values of position. Sub-millimiter positioning
errors are expected for this machine, which makes it a suitable reference system
for this application, since the expected errors of this dead-reckoning process are,
optimistically, in the order of a few millimeters.

The experimental trajectory consisted of a rectangle with dimensions 550 mm
and 350 mm in x and y directions, respectively. Machine speed was set to
8000 mm/min. Figure 2 shows an overview of the experimental set-up. Rectangle
vertices (V1, V2, ..., V5) will serve as control points for evaluating measurement
error in terms of 3D coordinates.

Sampling frequency was set to fs = 100 Hz. The dead-reckoning algorithm
is the one presented in section 3. Its unique parameter was set to β = 0.001386,
obtained using equation 3.

We highlight that, although the trajectory is rather bi-dimensional, all 6 DoF
of the IMU are activated in the measurement.

Implementation of data-processing package
Next we present the results of the data processing for this measurement task,

in which the additional processing techniques described in section 3 are applied
in a step-wise manner. Figure 3 shows the raw IMU outputs.
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(a) IMU mounted on CNC platform. (b) Representation of the experimen-
tal trajectory. Motion starts at V1 and
ends at V5.

Fig. 2: Experimental set-up.

Fig. 3: IMU raw outputs from application example 1.

As could be expected, results of mere integration of measured inertial signals
rapidly degenerate. Figure 4 shows the coordinates of the corresponding DR
trajectory.

For the quantitative analysis, we define the absolute positioning error for
each control point as the norm of the vector between the measured and the
nominal point. Table 1 shows such errors in the current configuration (named
Configuration 0).

The strategy for performing mathematical integration only during motion
periods is now implemented over the same measurement data. Figure 5 shows
the measured accelerations together with the identified periods of acceleration
due to motion of the IMU.
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Fig. 4: DR result using no additional processing.

Configuration V2 V3 V4 V5

0 386.97 540.14 675.17 700.83

Table 1: Absolute positioning errors (mm) of each control point using mere
integration (Configuration 0).

Fig. 5: Detection of motion periods.

Figure 6 shows the coordinates of the corresponding DR trajectory. It is
noticeable that this implementation brought major improvements to the dead-
reckoning results. Absolute positioning errors are shown in Table 2.
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Fig. 6: DR result after implementation of the “motion detection” filter.

Configuration V2 V3 V4 V5

0 386.97 540.14 675.17 700.83
1 32.17 44.30 44.49 25.74

Table 2: Absolute errors (mm) of each control point using motion detection filter
(Configuration 1).

Next, results obtained from the multi-position calibration experiment were
used to compensate for the residual fixed biases in each accelerometer (Configuration
2). For that, the average values of bx, by and bz were subtracted from the mea-
sured data of accelerometers in x, y, and z-axis, respectively. Positioning errors
were reduced in a few millimeters.

Finally, Configuration 3 includes the adaptive gain (β) strategy and the
application of a wavelet filter. The former is not expected to have any influence
in this case, since there are no changes in orientation along the trajectory. The
latter, a wavelet filter using Daubechies wavelet mother with J = 5, was applied
over the whole dataset.



12 James S. Eger et al.

Again, there was observed a few millimeters reduction in the positioning error
for the various control points under this configuration. Table 3 shows the absolute
positioning errors for all control points under each data-processing configuration.
Figure 7 shows the same data in a visual fashion.

Configuration V2 V3 V4 V5

0 386.97 540.14 675.17 700.83
1 32.17 44.30 44.49 25.74
2 30.96 43.74 44.41 23.22
3 30.63 42.61 35.94 10.76

Table 3: Absolute errors (mm) of each control point using motion detection filter
(configuration 3).

Fig. 7: Absolute positioning errors for points V2, V3 V4 and V5 using different
configurations of the DR algorithm.

Figure 8 shows the dead-reckoning result after the implementation of the com-
plete package of additional processing techniques. In brief, it can be seen that the
adopted data-processing strategy had a positive effect on the dead-reckoning per-
formance, yielding coherent measurement results. Greater contribution clearly
comes from the motion detection strategy for this case.
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Fig. 8: DR result after implementation of the complete data processing package
(Configuration 3).

4.2 Application example 2

The experimental data used in this example consists of an excerpt of a trajectory
from the open-access dataset, dubbed “BROAD” — Berlin Robust Orientation
Estimation Assessment Dataset, from [15]. The inertial sensor is the commer-
cially available myon aktos-t IMU. Data-processing algorithms are the same as
in application example 1.

Trajectory was generated by hand motion of the IMU, in volume of approxi-
mately (40 x 100 x 500) mm3. Figure 9 shows the coordinates from ground-truth
measurements and dead-reckoning results (already using configuration 3 of the
data processing algorithm). Selected points (P1, P2 and P3) for analysis of the
results are also highlighted in the figure.

Information of fixed bias values is not available in this case, and neither
is the possibility of running a multi-position calibration experiment. In such
situations, residual fixed biases of accelerometers will remain indistinguishably
combined with the measured signals, which in turn will cause a corresponding
decrease in the DR performance.

The absolute positioning errors of control points P1, P2 and P3 using differ-
ent configurations of the data-processing package are shown in Table 4 and in
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Fig. 9: DR result after implementation of the complete data processing package
(Configuration 3).

Figure 10. Configuration 1 is not applicable, since residual fixed bias compensa-
tion(accelerometers) was not possible.

Configuration P1 P2 P3

0 3247.7 3360.4 3404.2

2 16.94 32.13 60.06

3 10.53 15.99 78.13

Table 4: Absolute errors (mm) of each control point using different configurations
of the data-processing package for application example 2.

Beneficial effects of the data-processing package can be observed also in this
case. However, there is an exception in point P3, whose error grew from Config.2
to Config.3; reasons for this are not elucidated, but one possibility is that it may
lie on the uncompensated accelerometers’ biases.
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Fig. 10: Absolute positioning errors for points V2, V3 V4 and V5 using different
configurations of the DR algorithm.

5 Conclusions

A DR algorithm has been presented, including a minimal data-processing pack-
age, based on a deep literature review and confirmed by experience gained
through experimentation. This package has shown to bring significant bene-
fits to the DR performance without the cost of highly specific manipulation of
data. The use of 6 DoF IMU (i.e. only accelerometers and gyroscopes) limits the
performance of orientation calculations, but has the advantage of not suffering
with electromagnetic fields interference, wich is a common difficulty, specially in
indoor environments. The general character of the processing package makes it
likely to work well in a diversity of measurement tasks, as has been evidenced
by the two application examples. Thus, it may serve as a starting point for
other investigations on this subject. The organized overview of error sources af-
fecting the measurement result of position, as well as the clarification of some
relevant (and often misused) terms will contribute to further investigations on
this matter, for instance, in the development of measurement uncertainty mod-
els. We believe this work lays relevant foundations for further studies regarding
the measurement of position and orientation through dead-reckoning using six-
degree-of-freedom MEMS-type IMUs.
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