
Real time Aho-Corasick Implementation of String
Matching technique suitable for smart IOT

Mohammad Equebal Hussain
Department of Computer Science

Suresh Gyan Vihar University

Jaipur, Rajasthan, India
mdequebal.60508@mygyanvihar.com

Rashid Hussain
Professor and HoD

Suresh Gyan Vihar University

Jaipur, Rajasthan, India
rashid.hussain@mygyanvihar.com

Abstract — With growing technology, high speed internet,

ease of access of hand held devices at affordable cost and many

more such reasons, data is growing exponentially. Almost all

application require cost effective, fast and efficient real time

search, modify and replace feature within large volume of raw

data, which is nothing but streams of characters. In this article

we will propose a model for “Real time Aho-Corasick

Implementation of String Matching (RACISM)” technique

suitable for low cost internet enabled smart IOT device as an

extension to virtual wireless sensor network (vWSN). Aho-

Corasick (AC) is one of the best multiple string matching

algorithm also suitable for IOT application. AC is having

linear running time complexity of O(n) , where ‘n’ is length of

input stream. The beauty of this algorithm is that, once the AC

automaton is ready then computation time doesn’t depend on

the size of test data set, dictionary or pattern. It can match the

pattern on the fly within continuous stream of data. The

downside of Aho-Corasick algorithm is that it requires more

memory to store AC automata as a TRIE data structure, which

is an extension of deterministic finite automata (DFA). The

focus of this paper is to propose lightweight TRIE based

implementation of AC algorithm suitable for IOT devices.

Keywords— Aho-Corasick, dictionary, pattern, Finite State

Machine, Deterministic Finite Automata, String searching,

Internet of Things, virtual wireless sensor network

I. INTRODUCTION

In order to provide a smart service or solution requires
combination of infrastructure, framework, protocol,
intelligent algorithm and continuous innovation. Wireless
sensor network (WSN) as IOT when combined with real
time processing capabilities add lots of value to take real
time decision by solving complex and challenging problems
to make this world a better place to live. There is a basic
difference between IOT and WSN. The former can directly
exchange data over internet using sensors and API but WSN
is a group of sensor nodes where individual sensor consists
of power module, microcontroller and wireless transceiver.
WSN connects to the internet through a gateway. Individual
sensor nodes powered by batteries, forms a connected
network using star, tree or mesh topology. WSN is a
revolutionary information gathering method to detect
physical phenomenon useful across all industry including but
not limited to health, environment, agriculture, traffic
management etc [17].

String matching is one of the basic requirements for
solving problems such as text, image, speech, natural
language processing (NLP) to search certain relevant
information from continuous stream of data produced by
smart devices like IOT based wireless sensor network. The
result thus produced is consumed by other application for
further processing. It is commonly used to filter out bad
words, sensitive information like any personally identifiable

information (PII) etc in order to achieve data loss prevention
(DLP). Hence there is always a requirement for simple, cost
effective with improved performance of multiple string
matching technique.

Taking the advantage of latest hardware which support
large memory, advance computing capabilities, and
multicore processors. Such hardware also need efficient
algorithm to produce real time results. Although the string
search algorithm is not new but research activities has
increased significantly in last few years, which indicates that
requirement of efficient solution is very high [16]. Many
researches been done to make string searching as much fast
as possible either using hardware approach like FPGA [4] or
software approach using multiprocessor [5] and
multithreaded application. Boyer and Moore [2] worst case
linear time string searching algorithm by skipping large
portion of text during search. Wu and Manber is another
string search technique by checking multiple characters
simultaneously [3]. Aho-Corasick (AC) multiple string
search is the most commonly used algorithm [1]. Since AC
algorithm is already implemented using parallel pipelined
approach [6] or using multicore cpu [7], our focus is to
present a model useful for IOT based virtual wireless sensor
network (vWSN) devices by proposing combined approach.

Going forward, in this paper, we will discuss about how
Aho-Corasick automata (RACE) model is different from
deterministic finite automata, followed by implementation of
AC using forward and failure link, preparation of transition
table, proposed algorithm, comparison of results and
performance evaluation followed by proposed RACE model
architecture for an end to end design of IOT model. Finally
we conclude the paper.

II. BACKGROUND AND PROBLEM STATEMENT

A Deterministic Finite Automata is a finite state machine
defined as 5 tuple represented by a directed graph G(V,E)

having set of edges E ϵ ∑, set of vertex V ϵ Q. It always
starts from initial state q0. Based on the input character and
current state, DFA can either make a transition to next state
or stop if transition is not defined or reach to final state. An
AC automaton is little different from regular DFA because it
has an option to follow the failure link if next move is not
defined for the given alphabet.

Throughout this article, pattern and dictionary will be
used interchangeably. Let P = {p1, p2, . pn} is set of patterns.
S represents input text and |P| represents sum of length of all
patterns [1] where |P| = k = ∑i=1..n ki then problem statement
is to find ∀Pi ∊ P from S.

Pao and Liu [9] characterize AC automata as a state
graph G = (Q, E), where E is set of edge defined by the
transition function δ, i.e. E = {(u, w, v)|u ϵ Q ˄ w ϵ ∑ ˄ v =

BTSym2021, 021, v1: ’Real time Aho-Corasick Implementation of String Matching techni� . . . 1

δ(u, w))} where u, w and v are current state, input character
and next state respectively. Initial state q0 correspond to an
empty string ε. It also discuss about various approaches to
reduce memory cost in AC implementation using state graph
reduction, Lookup table compression and rule set
partitioning. Since the AC graph is constructed from pre
populated dictionary hence the number of failure link
increases as dictionary grows, and the relation between
dictionary size and number of failure link is not linear. The
majority of memory (≈ 99%) is used to store failure edge in
AC state graph.

String matching algorithm can be put into various
categories [12]. It is mainly divided into exact and
approximate matching which can be further sub divided into
software and hardware based exact and multiple matching
algorithm. Automata based approach is under software
multiple matching category.

FPGA based hardware implementation [13]-[15] of Aho-
Corasick multiple string matching algorithm with support of
software based state transition lookup table (LUT) doesn’t
require hardware reconfiguration when pattern gets changed.
Hence same hardware can be used multiple times.

S Faro [16] proposed fast skip-search algorithm which is
based on fingerprint technique in which each substring is
converted into a numeric value within certain range, which is
used for searching.

III. REALTIME AHO-CORASICK ENGINE (RACE) MODEL

A. AC Automata

Let M(C) represents the RACE model defined as 6 tuple
Finite State Machine (FSM) instead of 5 tuple regular DFA.
M(C) = (Q, ∑, q0, δ, Δ, F) represents Finite State Machine
which will be extended to Aho-Corasick automata with few
change. Each state will be represented using a circle with
label, Final state as labeled double circle, valid transition δ
using solid arrow from current state to next state with input
character as label, failed transaction Δ as dotted arrow from
current state to next state without label as shown in Figure 1.
We have used JFLAP software [10] to draw DFA and other
automata and draw.io online tool [11] for constructing
diagrams and charts throughout this document.

Q = Set of state
∑ = Set of characters, ε represents empty string, ε ϵ ∑*

q0 is initial state, q0 ϵ Q
δ represents valid transition function i.e. Q × ∑  Q
Δ represents failure transition function i.e. Q × ∑*  Q

F is set of final state. F ⊆ Q

Fig. 1. Diagram to represents RACE model [10]

B. Building labelled AC TRIE

Aho-Corasick is an efficient dictionary matching
algorithm which matches each elements of dictionary or set
of words within an input stream. The algorithm constructs a
TRIE using FSM with extra links called failure links
pointing to some node within the TRIE in order to traverse
for non matching elements from dictionary. For simplicity
let’s assume a dictionary of “m” words each of length “ĸ” to
find from a sequence of input string of length “n”. In order
to apply Aho-Corasick algorithm, the first step is to
construct AC automata from the dictionary.

Dictionary Ð = {“ACC”, “ATC”, “CAT”, “GCG”}
Input string Ṡ = “GCATCG”

 Represents no input or empty string

Below is the two step process to construct Aho-Corasick
automata M(C) from dictionary Ð.

1) Construct the Basic TRIE ß shown in Figure 2

represented by Table I and
2) Construct failure adjacency node Ậ which is longest

suffix for each node represented by Table II.

Fig. 2. Aho-Corasick basic TRIE ß for the dictionary Ð [10], [11]

C. Building Aho-Corasick transition table

Two separate AC transition table will be constructed as
below.

1) Constructing valid AC transition table δ from given
set of dictionary.

2) Constructing failure AC transition table Δ from
longest proper suffix when transition is not defined
by δ.

TABLE I VALID TRANSITION FOR DICTIONARY Ð

Current State Input Character Next State

<Root>

A <q1>

C <q6>
G <q9>

<q1> C <q2>
T <q4>

<q6> A <q7>
<q9> C <q10>
<q2> C <q3> (Final)
<q4> C <q5> (Final)
<q7> T <q8> (Final)
<q10> G <q11> (Final)

2 BTSym2021, 021, v1: ’Real time Aho-Corasick Implementation of String Matching techni� . . .

TABLE II AC TRANSITION Δ FOR FAILURE LINKS

Current State Next State Longest suffix

<Root> <Root>

<q1> <Root>

<q2> <q6> C
<q3> <q6> C
<q4> <Root>

<q5> <q6> C
<q6> <Root>

<q7> <q1> A
<q8> <q4> AT
<q9> <Root>

<q10> <q6> C
<q11> <q9> G

D. Building complete AC TRIE with failure links

Once the transition table is ready, construct final TRIE as
below so that input string can be processed in one pass.

Fig. 3. AC automata representing failure links for dictionary {ACC,

ATC, CAT, GCG} [10], [11]

E. Processing input string

Figure 3 represents AC TRIE for dictionary Ḋ containing
four patterns “ACC”, “ÁTC”, “CAT” and “GCG”. For each
word the final state is represented by state q3, q5, q8 and q11

respectively using double circle. TABLE I represents the
valid transition and Table-1b represents the failure
transition. At any point of time for a given input character
and present state, valid transition table will be looked up
first. If the entry is available then move to the next state
else failure transition table will be looked up for the next
state for alternate option using back-tracking. During
traversal, whenever a final state is reached, it represents a
match from dictionary. All the matched string can be put as
a list in the output.

TABLE III PROCESSING INPUT STRING “GCATCG”

Current

state Input

character

Transition using Table I and Table II

Next

state
Table Remarks

Input

character

consumed

<Root> G <q9> I START Yes

<q9> C <q10> I - Yes

<q10> A <q6> II Failure link No

Current

state Input

character

Transition using Table I and Table II

Next

state
Table Remarks

Input

character

consumed

<q6> A <q7> I - Yes

<q7>
T <q8> I

Final state
Match found

Yes

<q8> C <q4> II Failure link No

<q4>
C <q5> I

Final state
Match found

Yes

<q5> G <q6> II Failure link No

<q6> G <Root> II Failure link No

<Root>
G <q9> I STOP

Input
exhausted

From above transition two matches were found i.e. output
list contains {“CAT”, “ATC”}.

IV. IMPLEMENTATION AND ALGORITHM

As an initial implementation of AC TRIE, we used
“multifast-v2.0.0” [8]. It provides AC library with header
only implementation in C programming language. It accepts
two inputs, i.e. an array of finite string called pattern and
input string. It returns array of matched results as output.
Each entry in the output set also determines position of the
found occurrence and pattern that was matched. It also
accepts both inputs as files. IN order to achieve case
insensitive search, every input string need to be converted to
lower case. Version 2.0.0 also support replace functionality.
Steps are summarized as below.
Algorithm. Search using multifast AC library API.
Input 1. Pattern or dictionary as array of string or file.
Input 2. File containing string to be searched for pattern.
Output. Matched patterns with position in the input string.
Method.

 Begin

 Create a new trie - ac_trie_create ()

 do

 Add pattern to automata – ac_trie_add ()
 while (no more patterns)

 /* Finalize automata (no more patterns will be added) */
 Finalize the trie - ac_trie_finalize ()

 Display (optional) – ac_trie_display ()
 Set the input string – ac_trie_settext ()

 do

 Find the match – ac_trie_findnext ()
 while (not end of search)

 Release the automata – ac_trie_release ()
 End

V. RESULT AND PERFORMANCE EVALUATION

Our result is based on comparison between naïve search
methods vs. AC algorithm for 1000000 patterns each of
random length of maximum 256 characters long, containing
lower and upper case alphabets, numbers and special
characters within a given input string. The test ran for 9

BTSym2021, 021, v1: ’Real time Aho-Corasick Implementation of String Matching techni� . . . 3

iterations. Figure 4 in Table 4 shows the variation in
running time for both naïve and AC search.

TABLE IV RUNTIME COMPARISION BETWEEN NAÏVE AND AC SEARCH

Cycle

Running

time in

millisecond

(ms)

Naive AC

1 1145 10

2 1151 10

3 1153 11

4 1158 10

5 1174 11

6 1222 16

7 1248 10

8 1261 17

9 1644 16

Fig. 4. Run time comparison of naïve and AC
search for random pattern size < 256 characters.

We also evaluated the AC algorithm to compare the
performance based on three parameters i.e. number of
patterns |P|, length of input string |S| and size of
individual words in pattern file |k|.
1) Figure 5. Shows the result for |P| = 100000 and

300000 respectively, |S| = 256 and |k| = 8.

2) Figure 6. Shows the result for |P| = 100000, |S| = 256
and |k| = 16.

3) Figure 7. Shows the result for |P| = 300000, |S| = 512
and |k| = 8.

Fig. 5. Result: |P| = 100000 and 300000 respectively, |S| = 256 and |k| = 8

Fig. 6. result for |P| = 100000, |S| = 256 and |k| = 16

Fig. 7. result for |P| = 300000, |S| = 512 and |k| = 8

Hence from the test result it is proved that AC always
performs better compared to naïve method.

VI. PROPOSED DESIGN AND ARCHITECTURE

Fig. 8. Real time AC (RACE) model

Major components of proposed design represented in
Figure 8.
1) Thread pool – it is a pre-configured pool of

agents. Each agent is nothing but software
representation of physical IOT device. It accepts
connection from real device and then sends the data
over socket to dedicated RACE engine. The

4 BTSym2021, 021, v1: ’Real time Aho-Corasick Implementation of String Matching techni� . . .

synchronization between thread will be managed
by the thread pool manager. Agent is initialized
and resources were allocated at the time of
initialization. It is returned back to the pool when
complete its job. Agent never destroyed due to an
expensive operation.

2) Real time Aho-Corasick engine (RACE) - It
accepts the stream of characters from agent, and a
dictionary to build AC automata, parse it as per AC
algorithm, generate matched result from the real
time stream generated by IOT agent. The output is
then saved into Database, encrypted disk or HDFS
cluster for further processing by various application
possibly a cloud based DLP.

3) Radis - in memory database.
4) HDFS uploader - Its role is to upload parsed file

or records to Hadoop cluster.
5) Socket connection – TCP//IP wherever required
6) Dockerfile – It is a text file containing series of

instruction to build docker image. Few important
commands [17], [18] are FROM, RUN, COPY,
ADD, CMD, ENTRYPOINT, WORKDIR, USER,
VOLUME build ‘race’ using below instruction set.

 COPY docker/*.sh /usr/local/bin/
 docker build -t="race" . # create docker image
 docker run -it race /bin/bash
 docker build -t="race" --build-arg
DEVEL_TOOLS=1 .
 RUN set -ex \
 && ./configure --enable-ac \
 && make clean \
 && make

VII. CONCLUSION AND FUTURE WORK

Due to anywhere and everywhere high speed internet
availability, cloud computing, artificial intelligence based
wireless sensor network IOT devices etc are generating huge
data in which some of them are sensitive in nature. In order
to prevent loss of sensitive information, a real time multiple
string search technique is needed. Many research has
already been done and in progress but very few of them is
focused on IOT and WSN. With the help of performance
result it is evident that AC algorithm is simple and much
faster compared to normal search technique. In this article
we proposed a simple and elegant design and architecture in
which RACE is placed as an individual dedicated
component. This component could be running either as a
process or separate docker pod within virtual wireless sensor
network environment. Docker and vWSN are beyond the
scope of this paper. A major issue in AC algorithm is
memory requirement to maintain failure links but issue
already been addressed [9] using pipelined processing. The
fundamental property of RACE model is that it stores
complete dictionary or pattern before constructing the
model. This is done using finalize () method as mentioned in
section IV. Addition, deletion or modification of pattern is
not allowed once finalize is called. AC is quite interesting
algorithm where lots of scope exists for the improvement to

make regular expression based search instead of using static
dictionary. Since a regular expression can be represented as
a finite automata either deterministic or non deterministic
(DFA or NDFA). Therefore it is a challenging task to design
AC TRIE from regular expression rather than fixed set of
patterns. An approach is discussed [19] but at very initial
stage. If this is achieved then AC will be directly used to
match any pattern. For example let’s assume that a sensitive
information like credit card number, CVV and expiry date
can be represented using a regular expression, then
searching for a sensitive information like any credit card
detail using Aho-Corasick algorithm will add wings to
multi search process. Regular expression along with
dictionary is gaining popularity for DLP application. In
future study we will explore support for regular expression
in RACE model as well as hashing and fingerprint
techniques.

ACKNOWLEDGMENT

I would like to thank Dr. Rashid Hussain for his
encouragement and support during the research.

REFERENCES
[1] Alfred V. Aho and Margaret J. Corasick, Efficient String Matching:

An Aid to Bibliographic Search, Comm. ACM vol. 18, 1975, pp 333-
340.

[2] R. S. Boyer and J. S. Moore, “A fast string searching algorithm”,
Communications of the ACM, vol. 20, no. 10, (1977), pp. 62-72.

[3] WU, S. AND MANBER, U. 1992. Fast text searching: Allowing errors.
Commun. ACM 35, 10, 81–93.

[4] S. M. Vidanagamachchi, S. D. Dewasurendra, R. G. Ragel and M.
Niranjan, "Tile optimization for area in FPGA based hardware
acceleration of peptide identification," 2011 6th International
Conference on Industrial and Information Systems, 2011, pp. 140-
145, doi: 10.1109/ICIINFS.2011.6038056.

[5] D. Herath, C. Lakmali and R. Ragel, "Accelerating string matching
for bio-computing applications on multi-core CPUs," 2012 IEEE 7th
International Conference on Industrial and Information Systems
(ICIIS), 2012, pp. 1-6, doi: 10.1109/ICIInfS.2012.6304784.

[6] W. Lin and B. Liu, "Pipelined Parallel AC-Based Approach for Multi-
String Matching," 2008 14th IEEE International Conference on
Parallel and Distributed Systems, 2008, pp. 665-672, doi:
10.1109/ICPADS.2008.47.

[7] S. Arudchutha, T. Nishanthy and R. G. Ragel, "String matching with
multicore CPUs: Performing better with the Aho-Corasick algorithm,"
2013 IEEE 8th International Conference on Industrial and
Information Systems, 2013, pp. 231-236, doi:
10.1109/ICIInfS.2013.6731987.

[8] Available online at
https://sourceforge.net/projects/multifast/files/multifast-
v2.0.0/multifast-v2.0.0.tar.gz/

[9] Derek Pao, Wei Lin, and Bin Liu. 2010. A memory-efficient
pipelined implementation of the aho-corasick string-matching
algorithm. <i>ACM Trans. Archit. Code Optim.</i> 7, 2, Article 10
(September 2010), 27 pages.
DOI:https://doi.org/10.1145/1839667.1839672.

[10] Software for drawing DFA and other automata http://www.jflap.org/

[11] Online drawing tool http://draw.io/

[12] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan
and M. Imran, "Exact String Matching Algorithms: Survey, Issues,
and Future Research Directions," in IEEE Access, vol. 7, pp. 69614-
69637, 2019, doi: 10.1109/ACCESS.2019.2914071

[13] J. A. Joseph, K. Reeba, and S. Salivahanan, “Efficient string matching
FPGA for speed up network intrusion detection,” Appl. Math. Inf.
Sci., vol. 12, no. 2, pp. 397-404, Mar. 2018.

[14] M. Aldwairi, Y. Flaifel, and K. Mhaidat, “Efficient WU-Manber
pattern matching hardware for intrusion and malware detection,” in

BTSym2021, 021, v1: ’Real time Aho-Corasick Implementation of String Matching techni� . . . 5

Proc. Int. Conf. Elect., Electron., Comput., Commun., Mech. Comput.
(EECCMC), Tamil Nadu, India, Jan. 2018, pp. 1-6.

[15] X. Wang and D. Pao, "Memory-Based Architecture for
Multicharacter Aho–Corasick String Matching," in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 1, pp.
143-154, Jan. 2018, doi: 10.1109/TVLSI.2017.2753843.

[16] Faro, S.. “A Very Fast String Matching Algorithm Based on
Condensed Alphabets.” AAIM (2016).

[17] Hussain M.E., Hussain R. (2021) Bluetooth 5 and Docker Container:
Together We Can Move a Step Forward Towards IOT. In: Misra R.,

Kesswani N., Rajarajan M., Bharadwaj V., Patel A. (eds) Internet of
Things and Connected Technologies. ICIoTCT 2020. Advances in
Intelligent Systems and Computing, vol 1382. Springer, Cham.
https://doi.org/10.1007/978-3-030-76736-5_19

[18] https://docs.docker.com/engine/reference/builder/

[19] G. Bhamare and S. Banait, "Faster Multipattern Matching System on
GPU Based on Aho-Corasick Algorithm [J]", International Journal of
Computer Science & Mobile Computing, vol. 3, no. 7, 2014.

6 BTSym2021, 021, v1: ’Real time Aho-Corasick Implementation of String Matching techni� . . .

