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Abstract: 

In this paper, image noise reduction  is formulated as an optimization problem. The target image 

is denoised using low rank approximation of a matrix. Considering the fact that the smaller 

pieces of the picture in natural images are more similar to each other (more dependent); 

therefore, the use of low rank approximation on smaller pieces of the image is more justifiable. 

In the proposed method, the image corrupted with AWGN (Additive White Gaussian Noise) is 

locally denoised, and the optimization problem of low rank approximation is solved on all the 

patches with fixed sizes. Therefore, for practical purposes, the proposed method can be 

implemented parallelly. This is one of the advantages of such methods. In all noise reduction 

methods, the two factors including the amount of the noise removed from the image and the 

preservation of the edges (vital details) are very important. In the proposed method, the use of TI 

image (Training Image) obtained from noisy image, the use of SVD adaptive basis, ability to 

iterate the algorithm and ideas like patch labeling have all lead to sharper results, good edge 

preversation and acceptable speed  compared to the other tested methods. 

Keywords: Optimal Low Rank Approximation , SVD, Signal Denoising, Image Denoising, 

Signal Processing. 

1. Introduction: 

Signal denoising is one of the most important issues in the field of digital image processing. 

Noise destroys or damages vital information and details of a signal. Therefore, noise cancellation 

is one of the early stages of the process of features extraction, object recognition, image 

matching, and so on. So far, several methods have been proposed for removing noise from digital 

images[1-12]. AWGN is one of the most significant noises studied by researchers. In each pixel 

of noisy image built by AWGN, a value is added to the gray level of the pixel. This value is 
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sampled independently from Gaussinan distribution. AWGN denoising methods can be divided 

into three categories including correlation- based (or spatial filter), transform-based and hybrid 

methods. Correlation-based methods work directly with spatial values of the image in the spatial 

domain. The advantages of correlation-based methods include simplicity of its algorithms and 

their acceptale speed. Transform-based methods first transfer the image to the desired transform 

domain and then denoise the image. It can be deduced that applying transformation on a signal 

means changing the axes of the coordinates to represent the signal. Changing the coordinates of 

the signal representation, makes it possible to effectively separate the noisy and non-noisy part of 

the signal that it is the advantages of thease methods. The hybrid methods use both of thease 

methods simultaneously and benefit from each one. 

When denoising the image, amount of noise eliminated, edge and textures preservation of the 

image are the most important issues. Two methods of moving average and Gaussian filter are 

one of the easiest correlation-based methods, which  like a low pass filter, soften the high-

frequency parts of the image (including noise and edges) and, in addition to noise cancellation, 

eliminate some of the tiny and vital information of the image [2]. BF(Bilateral Filter) is 

introduced to better edge preservation [3]. In this filter the value of each pixel is estimated by the 

average weights of the neighbors that the weights are determined by  similarity of intensity and 

spatial similarity. The NLM method is  non-local version of BF which estimates the value of 

each pixel with the weighted average of the similar pixels of the image that the weights being 

determined by the similarity between them. The advantages of such methods are the simplicity of 

the algorithm and the relatively convenient speed  of the method. 

Transform-based  methods are based on the principle that images can be represented by some of 

the sparse basis like Wavelet, Curvelet and Contourlet [13]. Some of these basis are fixed, but 

some are adapted to the signal information that selected adaptively. Because of complex 

singularities in many images, using fixed basis such as wavelet will not always yield acceptable 

results. Two methods [14] and [15] have proposed an adaptive representation method called K-

SVD. In these methods, an optimization problem is solved with greedy algorithms and then a 

dictionary for noise cancellation can be trained that the columns (atoms) of this dictionary can be 

used as  adaptive basis for sparse representation. Todays, the use of methods based on sparse 

representation in many applications such as noise cancellation, super-resolution, image 

reconstruction, inpainting, and so on, has provided acceptable results [16-18]. Noise spreads over 

all transform coefficients. However, most of the basic image information is focused only on a 

few of the largest coefficients. Hence,in such methods image denoising can be done with many 

shrinkage methods such as [19]. In general, methods such as K-SVD, [20] and [21] that solve an 

optimization problem to denoise an image are called optimization-based methods. These 

methods are commonly found in the family of transform-based  methods. Because of solving 

optimization problems, these methods usually have a lot of computational complexity and are 

slow. 

The BM3D method is one of the hybrid methods that use spatial filtering and transform-based 

methods [22]. This method denoises the image by grouping similar patches in 3d arrays and 

sparse filtering. So far, more complete versions of BM3D method have been presented that with 



shape-adaptive principal component analysis has improved its results [23]. Some of the hybrid 

methods like ASVD and SAIST have used useful properties of SVD basis. ASVD method uses 

SVD for training basis for representing image patches and SAIST method denoises image by 

using SVD and sparse representing of image patches [24, 25]. The important features of these 

methods are that they combine the useful properties of correlation-based and transform basded 

methods and output images provide better results in terms of speed and quality. 

In this paper, we intend to provide a adaptive local denoising method using adaptive SVD basis. 

In this method, a TI(Training Image) is created using noisy image and Gaussian filter that its 

information is used in denoising [26, 27]. According to locality of the algorithm, SVD is 

computed for all image patches(overlapping) and using TI information each patch is denoised 

individually and adaptively. In order to prevent artifacts, after computing estimated patches, 

aggregation phase is done and average obtained values replaced in overlapping areas. One of the 

advantages of these methods is to deal with each patch individuay and can be implemented in 

parallel in practical purposes. Given the ideas in the proposed method, this method belongs to the 

family of hybrid methods. 

The various sections of the article are as follows. In section 2, we will examine the linear 

representation of the image using SVD and how to formulate the low rank approximation 

problem. In section 3, the proposed method will be presented and we will explain the applied 

ideas. In section 4, the results of the proposed method are presented and conclusions are made in 

section 5. 

2. An Overview of SVD Concepts and Low Rank Approximation 

2.1 An Overview of SVD 

Suppose A represents an gray level image. The basic principle of the linear representation of the 

image is that the matrix A can be represented as the sum of the weighted basis given as equation 

(1). In this equation, 
i

a  are the coefficiants and 
i

f  are corresponding basis. These basis can be 

chosen from well-known basis such as wavelet, curvelet, bandlet,contourlet and so on[28-31].  
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It is similar to the Fourier series. Each periodic 2d function can be represented in terms of 

exponential basis and 
mn

C  coefficients are according equation (2). 
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According to the expansion of the Riemann–Lebesgue lemma, 
mn

C  coefficients are descending 

and equation (3) results [32]. 
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This lemma states that the high harmonic coefficients are very small and they have very little 

effect on reconstructing the signal. So, if we truncate coefficients from a frequency to the next, 

the original signal can be reconstructed with a fairly good approximation. In the next section, we 

will use the idea of truncating some of the coefficients for signal denoising using SVD. 

In SVD theory, each matrix can be decomposed as equation (4): 

(4) tA U V= S 

That 
1

[ ... ]
m m m

U u u
´

= (left singular vector) and 
1

[ ... ]
n n n

V v v
´

= (right singular vector) are 

orthogonal matrix. So according to equation (5): 
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It should be noted that the columns of 
m m

U
´

 and 
n n

V
´

 matrices  are composed of 
tAA  and 

tA A  

orthonormal eigenvectors matrices respectively. 
m n´

S  is a semi-diagonal matrix that the values 

on its diagonal are the singular values of the 
tA A  or 

tAA matrices.  So we will have: 
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That 
1

s  is the largest and 
k

s is the smallest non-zero singular value of the matrix A. 

2.2 The Formulation of Low Rank Approximation Problem  

 Approximation of a matrix with a lower rank matrix can be done using SVD. The main issue in 

this section is to estimate the low rank matrix B from the matrix A. According to equation (7), in 

singular value decomposition of matrix A with rank r we will have: 
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Due to definition of the two matrices U and  V in section 2.1, the singular value decomposition 

of the matrix A can be represent as equation (8): 

(8) 
1 1 1 2 2 2 1 2

... , ... .t t t

r r r r
A u v u v u vs s s s s s= + + + > > > 



In general, we represent matrix A linearly in the form of (9) or (10) equations according to SVD 

of A. 
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By comparing equation (1) and (10), we see that 
i

s are coefficients and 
i i

u v are corresponding 

basis which unlike the constant basis of fourier series, are selected adaptively using signal 

information. According to equtioan (11):  

(11) 
1 2
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So, Similar to representing a signal by the Fourier Series and according to Riemann–Lebesgue  

lemma, primary coefficients play a larger role in reconstructing matrix A. 

Now we can consider the main problem, namely, the determination of B (the low rank 

approximation of the matrix A) as an optimization problem in the form of (12): 

(12) 2

2
arg min . ( ) .

z

B A z st rank z k= - = 

In the above statement k is named sparsity. Considering SVD for matrix A, according to Eckart-

Young-Mirsky's theorem available in [33]  and equation (9), there will be a closed form answer  

for the optimization problem in (13): 
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The theorem in the above reference, describes a criterion for calculating the optimal value of  K 

as (14): 
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In accordance with the above criterion, the sum of the k values of retained singular values must 

be greater than (or equal to) the sum of the truncated values, so that an appropriately low rank 

approximation of A can be obtained. Now, considering the discussions in the next section, we 

will discuss how to eliminate noise using SVD. 

2.3 Signal Denoising Using SVD 

Signal denoising is One of the applications of low rank approximation. Assume that we have 

sampled the continuous time signal ( )x t  and represented  
1 2 3

[ ... ]
m n

x x x x x
´

=  as a vector. Now 

we can classify the samples in an appropriate order and represent them as matrix A. 
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According to equation (15), if we compute the singular values of matrix A, some of them are 

much larger than other singular values and smaller coefficients have less role in creating the 

matrix structure [12]. 

(15) 
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Now consider the following noisy signal: 

(16) .
n

x x n= + 

In the above equation, nx is noisy signal,  x is the noise-free signal and n  is noise. Noise 

increases the significance of the last sentences by increasing the smaller singular values of the 

matrix(signal), thereby destroying the original structure of the matrix. If these sentences can be 

truncated(or at least minimize their impact in reconstructing the signal) using low rank 

approximation, signal denoising will be possible. In order to test the denoising method using 

Eckart-Young-Mirsky criterion, tow one-dimensional noisy signal are denoised and the results 



are shown in Figure 1. It should be noted that in these tests, the number of samples is 100 that 

arranged in a 10 10´  matrix. In the following tests, k is sparsity of the semidiagonal matrix S
that it is determined using Eckart-Young-Mirsky criterion. For example, k=3 means that the 

signal is reconstructed by 3 of the largest singular values(is denoised). The following results 

show that, truncating smaller singular values has improved the noisy signals. 

 

 
b)   k=2 

 

 
a)   k=3 

Figure 1. The results of applying noise reduction method using SVD and Eckart-Young-Mirsky criterion 

on two noisy signals. 

 

 

3.  The Proposed Method 

Before explaining the proposed method, in order to better understanding the cause of the used 

ideas and more detailed description of the proposed method, we need to review some of the 

basics used in the proposed method. 

3.1 A review of the Gaussian Filter, High and Low Frequency Component and Canny Edge 

Detection Method 

3.1.1 2d Gaussian Filter 

2d Gaussian filter is a low pass filter based on probability distribution function of (17). 
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In Figure 2, a view of 2d Gaussian filter is depicted. In the above equation, g
s is the Gaussian 

filter standard deviation  and x and y representing the filter locations. Gaussian filter is a low 

pass filter. Due to the fact that noise appears at high frequencies in the image, image denoising 

using Gaussian filter is one of the easiest ways. After applying it to the image, the high-

frequency parts of the image (edges + details) and noise somewhat destroyed and the remaining 

parts are general and smooth parts of the image. In fact, the resulted image is smoothed(blured). 



 
Figure 2. 2d Gaussian filter with window size=15 and the standard deviation=6. 

 

For example, when the CAMERAMAN image passes through a Gaussian filter with a standard 

deviation of  2, the resulting image will be in accordance with Figures 3 and 4. As can be seen 

from Figures 3 and 4, the blur effect of the Gaussian filter to eliminate noise is an unpleasant 

factor that results in the loss of many details of the image. Using this filter, we can decompose 

the high frequency and the low frequency component of the image, which we will examine in the 

next section. 

 
Gaussian filter output image with standard 

deviation 2 

 
Input Image 

 

Figure 3. Effect of Gaussian filter on CAMERAMAN image 

 

 
Gaussian filter output denoised image with standard 

deviation 2 

 
Input Noisy Image 

 

 

Figure 4. Effect of Gaussian filter on CAMERAMAN image 



3.1.2 Decomposition of High Frequency and Low Frequency Component of Image Using 

Gaussian Filter 

In general, each image can be decomposed into sum of a low-frequency image (general  details) 

and a high-frequency image (including edges and fine details). For example, Figures 5 and 6 

illustrate the decomposition of an noisy image a/nd non-noisy image into two high frequency and 

low frequency images, respectively. 

 
High Frequency Image (High 

Frequency Component) 

 
Low frequency image (low 

frequency component of image, 

standard deviation = 2) 

 
Original Image 

 

 

 

Figure 5. Decomposing the low frequency and high frequency component of the image using the Gaussian filter 

 

 
High Frequency Image (High 

Frequency Component) 

 
Low frequency Noisy Image 

(standard deviation = 4) 

 
Original Noisy Image 

 

 

 

Figure 6. Decomposing of low frequency and high frequency component of Noisy image using Gaussian filter 

By separating the high frequency and the low frequency component of the image using the 

Gaussian filter, we will be able to separate the noise+edge image (the high frequency component 

of the image) in the noisy images. Then by using the information of low frequency component 

that contains general information of the image, the noise+edge image is denoised, and ultimately, 

by integrating the denoised high frequency component, and the low frequency component, we 

obtain an image without noise. Using this idea, we use the information we get from the image 

itself, and we can obtain a higher accuracy in the process of truncating the SVD coefficients. 



Because according to the analysis, the larger coefficients of (low frequencies) SVD, contain 

image generalizations, and smaller coefficients (high frequencies) include image and noise 

details. Now, if we can truncate the coefficients adaptively using low frequency component 

information, the output image will have an acceptable sharpness in addition to noise removal. 

3.1.3 Canny Edge Detection Method 

Canny Edge Detection is one of the most common methods for extracting the Image edges. In 

this method, first the magnitude and direction of the gradient of the image are calculated at each 

point. Then using the information of the gradient, two thresholds(low and high) are considered. 

The points of the image whose gradients are higher than the upper threshold are definitely among 

the strong edges, but the points whose gradients are lower than the lower threshold are not 

considered to be edges of the image. The points that their gradients are between the two 

thresholds are considered to be one of the edges where their neighbors are the edges of the 

image. This method has acceptable accuracy compared to other methods and at the same time, 

using two thresholds for the image gradient, extracts the strong and weak edges of the image. In 

Figures 7 and 8, we can see an example of the edge detection with canny method for noisy and 

non-noisy images. 

 
Edge detection using Canny method 

 

 
Original Image 

Figure 7. Edge detection for CAMERAMAN image using Canny method 

 

 
Edge detection using Canny method 

 

 
Original Noisy Image 

Figure 7. Edge detection for CAMERAMAN image using Canny method 

 



As deduced from Figure 8, the derivation(edge detection) of a noisy image results in the creation 

of another noisy image. For better understanding of  this issue, consider Figure 9. 

 
Figure 9. derivation of a noisy signal 

 

The above result is obtained if a noisy signal is derived for the edge detection(structures and 

textures areas that have sudden changes). So, the derivation of the resulting signal will be noisy 

and can not be used to identify the edges. In order to prevent this problem, the signal must be 

smoothed. That is, it is passed through a low pass filter (Gaussian filter) so that the high-

frequency components that cause the problem become less effective and then derivate it to reveal 

the edges. In Figure 10, this process is depicted for a noisy signal. In Figure 10, f is the noisy 

signal and h refers to a Gaussian filter. Given the AWGN noise and the definition of the standard 

deviation calculation, in this paper, the standard deviation of the Gaussian filter for each image is 

estimated using Equation (18). 
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Figure 10. How to use a derivative of a noisy signal to identify the edge 



For the reasons given, to identify the edges and  structured areas in the image, first we pass the 

image from a low pass filter to minimize the effects of noise, then it is derived (canny algorithm) 

and we find the edges of the image. In Figure 11, these steps are shown. 

 

 
Low frequency component of noisy image with w=15 and 

standard deviation=6. 

 

 
Noisy Image 

 

 
Noise + Image edges 

 
Extracted  edges using canny method 

Figure 11. Production of TI and Noise+Edges image from a noisy image 
 

As we can see from the above, using the idea of filtering the image with Gaussian filters and then 

extracting the edge using the low-frequency component of the image, we were able to detect the 

critical edges of the image (Training Image) with acceptable accuracy. We will use the 

information in the training image to remove noise from the noise + edge image. After denoising 

of noise+edge image, it will be combined with the low-frequency component of the image and 

create a denoised image. 

3.2 Using Training Image and Algorithm of the proposed method 

In the previous section we were able to determine the edge image(important parts of the image 

structures) using a Gaussian filter from the noisy image. The resulting image can be used as an 

training image, or as a model for detection of texured areas of the image. The resulting TI makes 



it possible to use the information in the noisy image to eliminate noise adaptively. In this section, 

based on the reviewed basics and ideas, a new algorithm is proposed that, in addition to 

eliminating noise in smooth areas, improves the output image sharpness. According to the 

previous descriptions, the proposed method is shown in table 1. As can be deduced from Figure 

12, some noise reduction methods eliminate many of the critical details of the image and blur the 

output image.  

As described in previous sections, we would like to apply  low  rank approximation to smaller 

pieces of the image. The reason is that the smaller parts in a natural image are more similar to 

each aother, and low rank approximation of smaller pieces of the image is more justifiable. For 

this purpose, for each pieces extracted from the image (the high frequency component of the 

noisy image), the singular value decomposition of that slice is calculated. In order to better 

preserve the edges and important details of the image, using the corresponding patches in the TI 

image, We make pieces of noisy image that have low edges (that is, the part of the image is 

almost smooth) to be reconstructed with smaller singular values and we will compel the parts 

that are more detailed to be made with a greater number of singular values. For this purpose, in 

the proposed algorithm, for each patch of the noisy image, the corresponding patch in the TI 

image is also extracted. If the average gradient in each patch exceeds the mean gradient of the 

total TI image, it indicates that the patch belongs to the textured parts of the image, and so we 

use the ECKERT method to truncate and determine k. If the average  gradient of the patch was 

less than the mean gradient of the total TI image, it indicates that the patch belongs to the smooth 

areas of the image and in order to reduce the computational complexity, the k value is considered 

to be 1. This idea, in addition to reducing the computational complexity, preserves important and 

vital information in structured areas and prevents the image from bluring. This operation is 

performed on all the extracted patches of the noisy image (with overlapping) and eventually the 

denoised image is created. It should be noted that with respect to the overlapping of patches with 

each other, there are several values for parts of the image. In those parts, the mean of those 

values is used and that’s called Aggregation process. Since the optimization problem is solved in 

the noise reduction process of the proposed method, the proposed method is one of the 

optimization-based combination methods. In order to reduce the computational complexity and 

increase the speed of the proposed algorithm, the patches of the image are labeled in terms of 

their similarity (patch labeling process). Therefore, before entering the low rank approximation 

process, in the preprocessing stage, the similarity of different patches of the TI image is 

examined using Euclidean distance, and the patches that are similar to each other have the same 

label. Using Equation 19, we can examine the similarity of each patch with other patches: 

(19) 2

2
( , )

i c i c
s p p p p= - 

In the above equation, 
2
 refers to Euclidean distance, 

i
p  refers to vectorized reference patch, 

and 
c

p  refers to  vectorized candidate patch. The smaller the value of ( , )
i c

s p p means that the two 

patches are more similar to each other. The reference patch with n numbers of the same patches 

together make up a group that they all have the same label. By labeling different TI patches and 

using the above idea, the computational complexity of the proposed method is reduced and for 



the patches of each group, the k value is considerd to be the same. In fact, the k value is 

calculated for the agent of each group and for other patches of the group, the same k is 

considered. 

Another idea that can be improve the image quality is that the proposed method can be iterative. 

By performing the above steps on the noisy image(in the first iteration) and denoised image(in 

the next iteration), the output image is refined and the noise effects will be minimized. Of course, 

this idea will increase the quality of the output image for a limited number of iterations and will 

not have any effect on the output image from a iteration number to the next. 

 
 

Figure 12.  the result of method [20] 

 
Input: Noisy Image A 

Output: Denoised Image H 

Parameters: ws:Patch Size, n:The Number of Groups in Patchlabeling, iternum:The number of Iteration. 

Algorithm: 

Set ws and n. 

For iter=1 to iternum do 

1-Decompose A for first iteration and H for other iteration to 
L

A (Low Frequency Component) and 
H

A (High Frequency 

Component) Using Part 3. 

2- Get the TI Image Using CANNY Edge detection and 
L

A . 

3- Do Patch Labeling on the TI  with n Group Using Part 3.2.  

4-For all of the Patches with ws size in 
H

A , Extract the Corresponding Patch in the TI Image. For Patches with the same 

label, set the value of k equal to specified value fo their agent and go to step 6 . 

5-If the Mean Gradient of the Patch is greater than the average gradient of the image, set k with ECKERT Method, 

Otherwise set k equal to 1. 

6-Reconstruct the Patch with specified k and Place it in the  Corresponding Location in Denoised Image 
H

H . 

7-Do Aggregation phase. 

8-Compute Denoised Image with following equation :
H L

H H A= +  

Table 1. The proposed method 

 

4. The Results of The Proposed Method 

Given that the proposed method which is one of the optimization-based combination methods, In 

this section, the results of the proposed method are compared with the methods [18], 

[19],[6],[11] and [21]. The above methods are implemented on the standard test images of 

CAMERAMAN, LENA, PEPPERS, Mandrill, Boats and the performance of each one will be 

investigated. The reason for using these standard images is their variability in texture and detail, 

and most articles in this field evaluate the effectiveness of the proposed method on these images. 

Implementation of all algorithms are done using a computer with an Intel Corei7.1.8GH 



processor, 6GB of RAM and with the MATLAB software running under the Windows 8.1 

operating system. In this section, in all experiments, the size of the CAMERAMAN image is 256 

× 256, the size of the rest of Images is 512 × 512, and the noisy image is obtained by adding the 

AWGN with various n to test images. To test the performance of the proposed method, as well 

as articles in Image Processing, the PSNR (Peak Signal-to-Noise Ratio) and FSIM (Feature 

Similarity Index) criteria have been used. These two criteria are fully stated in the reference 

method [11] and they have not been repeated in this article. Although the PSNR criterion is 

calculated in all noise-canceling methods, in some cases the quantity obtained does not 

correspond to human visual perception. For this purpose, in addition to the PSNR, another 

measure called FSIM is used. This criterion is obtained by measuring the similarity between the 

two images and by combining the phase correlation property and the gradient magnitude. The 

results of one method for each of the above criteria are superior to the other methods if they have 

a higher numerical value. 

 For proper selection of algorithm parameters such as n, number of Iterations, and patch size, the 

proposed method has been tested on the CAMERAMAN image and its results are reported in 

Table 2. According to the results of Table 2 and Figure 13, for the proposed method, ws = 25, n 

= 1000 and iternum = 3 are considered, and Its results, along with other methods, are presented 

in Table 3 and Figure 14. In order to investigate the performance of ideas such as being local and 

choosing an adaptive optimal k in the proposed method, It’s results are presented globaly and 

with various sparsity in Figure 15. As it is deduced, the above ideas in terms of visual and PSNR 

criterion have improved the algorithm. Because the results obtained using the above ideas are 

significantly superior to other comparisons in terms of visual quality (sharpness of image and 

removing noise) and PSNR criterion. 

To test the speed, the proposed algorithm and the compared algorithms are compared in terms of 

runtime in the same conditions and the results are presented in Table 4. As expected, the 

reference methods [6], [18] and [19] are slower than the proposed method because they are 

among the optimization-based methods. The method [11] has a close runtime because of its 

similarity of with the proposed method. The method [21] is also slower than the proposed 

method due to the technique used to group similar patches into three-dimensional arrays. 

 Also, according to the results obtained in this section, the proposed method provides better 

results in terms of PSNR, FSIM and edge preservation compared to the other methods. The 

reason is the use of TI obtained from the noisy image in order to determine optimal k, which 

helps to maintain useful details in the textured parts of the image. Since the proposed method is 

one of the optimization-based hybrid methods, it is expected that the execution time of the 

algorithm will be longer than other methods. But, due to the use of the of patch labeling idea, and 

by using the same sparsity for similar patches, the computational complexity of the proposed 

method has been greatly reduced, and the speed of the proposed algorithm is acceptable comared 

to other methods. Therefore, based on the ideas of local adaptive Svd basis, the training image, 

patch labeling and the repeatability of the proposed method, the proposed method was able to 

provide an acceptable performance in terms of quantitative and visual evaluation and speed of 

algorithm compared to the comparison methods. 



PSNR(dB) 

 

Patch Size (ws) n 

34.17 9 500 

34.32 17 500 

34.22 25 500 

34.07 35 500 

34.37 9 1000 

34.44 17 1000 

34.54 25 1000 

34.28 35 1000 

34.2 9 2000 

34.31 17 2000 

34.15 25 2000 

34.11 35 2000 

34.11 9 3000 

34.12 17 3000 

34.04 25 3000 

34.01 35 3000 

 CAMERAMANTable 2. Analyze the sensitivity of the proposed method parameters on the 

10
n

s =image with   

 

 
Figure 13. Effects of the number of iterations on the CAMERAMAN and PEPPERS Images. 

 
Proposed 

PSNR        FSIM 

Method [11] 

PSNR    FSIM 

Method [21] 

PSNR  FSIM 

Method [6] 

PSNR     FSIM 

Method [19] 

PSNR         FSIM 

Method [18] 

PSNR      FSIM 
n 

(Noise 

Level) 

Image 

0.89 34.50 0.88 34.35 0.87 34.33 0.83 34.23 0.77 33.36 0.87 34.20 10 CAMERAMAN 

0.77 31.20 0.77 31.22 0.75 31.05 0.80 31.40 0.77 31.00 0.79 30.80 30 

0.68 29.90 0.66 29.60 0.66 29.62 0.57 28.90 0.76 30.00 0.61 28.80 50 

0.97 36.03 0.98 36.00 0.98 36.07 0.96 35.60 0.94 35.10 0.96 34.80 10 LENA 

0.95 31.70 0.95 31.35 0.95 31.39 0.85 30.50 0.91 31.30 0.88 31.00 30 

0.93 29.15 0.92 28.96 0.92 29.07 0.68 28.10 0.84 29.3 0.72 28.50 50 

0.97 35.10 0.95 35.01 0.95 35.03 0.97 35.00 0.92 34.30 0.95 33.30 10 PEPPERS 

0.89 30.50 0.89 30.45 0.87 30.40 0.87 31.20 0.89 30.40 0.87 30.80 30 

0.81 29.30 0.82 29.34 0.81 29.33 0.70 28.83 0.88 29.50 0.70 28.50 50 

0.87 32.19 0.86 32.20 0.86 32.15 0.85 32.10 0.82 32 0.83 32.01 10 Mandrill 

0.76 29.96 0.76 29.95 0.76 29.85 0.75 29.78 0.74 29.45 0.75 29.50 30 

0.70 27.95 0.69 27.92 0.69 27.90 0.66 27.86 0.64 27.71 0.64 27.85 50 

0.96 36 0.97 35.84 0.97 35.99 0.95 35.45 0.92 35 0.95 34.20 10 Boats 

0.95 31.50 0.93 31.21 0.94 31.35 0.83 30.35 0.90 31 0.87 30.56 30 

0.89 28.61 0.90 28.64 0.94 29 0.67 28.05 0.82 29.10 0.70 28.10 50 

0.866 31.57 0.864 31.46 0.86 31.50 0.80 31.15 0.83 31.23 0.80 30.92 - Average 

Table 3. The results of different methods on standard test images 



 
b) Noisy Image 

 
a) Original Image 

 
d) Method [19] 

 
c) Method [18] 

 
f) Method [21] 

 
e) Method [6] 

 
h) Proposed Method 

 
g) Method [11] 

Figure 14. The results of different methods on CAMERAMAN with standard deviation of 10 in dB. 
 

 



 
b) Noisy Image 

 
a) Original Image 

 
d) k=2,PSNR=31.8 

 
c) k=1,PSNR=30.09 

 
f) k=4,PSNR=31.02 

 
e) k=3,PSNR=31.4 

 
h) Proposed,PSNR=33.61 

 
g ) Global,PSNR=30.75 

Figure 15. The results of the proposed method with different sparsities and in general on a noisy CAMERAMAN 

image with a standard deviation of 25 in dB. 

 



 

Method Time(second) 

Proposed Method 11.21 

Method [19] 13.85 

Method [18] 38.66 

Method [6] 27.25 

Method [21] 33.56 

Method [11] 11.43 

Tabel 4. Runtime of different methods 

 

5. Conclusion 

In this paper, a localized AWGN noise reduction method based on SVD is presented. In this 

method, using a low frequency component of noisy image and image gradient, a TI image is 

created which uses its data to adaptive optimal low rank appoximation of each patch and the high 

frequency component of the noisy image will be input of proposed algorithm. To eliminate the 

noise of each patch from the high frequency component image, the corresponding patch is 

extracted in the TI image. If the average of the gradient of the patch exceeds the average gradient 

of the total TI image, the patch belongs to the textured parts of the image and therefore, using the 

answer to the optimization problem, it should be reconstructed. Otherwise, the patch belongs to 

the smooth ares that are reconstructed with less sparsity. This is done for all image patches to 

create a high frequency component of denoised image. The combination of the high-frequency 

component of denoised image and the low-frequency component of the noisy image make the 

output image of the algorithm. In the proposed method, the use of adaptive basis of signal 

representation and ideas such as patch labeling and the adaptive determination of the sparsity of 

each patch in the SVD domain, have caused that the proposed method, in addition to proper 

quality and accuracy, have an acceptable speed and computational complexity. 
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