
An Interval Insight to Adomian Decomposition Method for Ordinary 

Differential Systems by Considering Uncertain Coefficients with 

Chebyshev Polynomials 

 
Navid Razmjooy1, Mehdi Ramezani1, 2, Vania V. Estrela3, G. G. Oliveira³, A.C. B. Monteiro³, R. P. Franca³, Y. Iano,³ 

 
1Department of Electrical Engineering, University of Tafresh, Tafresh, Iran. 

Email: navid.razmjooy@hotmail.com 
2Department of Mathematics, University of Tafresh, Tafresh, Iran. 

Email: ramezani@aut.ac.ir 

³Dep. of Telecommunications, Fluminense Federal University (UFF),  

Niteroi, RJ, Brazil vania.estrela.phd@ieee.org  

³School of Electrical and Computer Engineering (FEEC),  

University of Campinas  

Campinas - SP, Brazil,   

Email: oliveiragomesgabriel@live.com  

 Email: carol94monteiro@gmail.com  

Email: reinaldopadilha@live.com  

 Email: yuzo@decom.fee.unicamp.br 

Abstract- Generally, parameters in the mathematical models of engineering problems are considered deterministic. 

Although, in practice, there are always some uncertainties in the model parameters. Uncertainty can make an 

accurate or even wrong representation for the analyzed model. there is a wide reason which cause the uncertainties, 

like: measurement error, inhomogeneity of the process, etc. This problem leads researches to analyze the problem 

from a different point of view. When the uncertainty is present in the process, traditional methods of exact values 

can't solve the problem with no inaccuracies and mistakes. Interval analysis is a method which can be utilized to 

solve these kind of problems. In this paper, an interval Adomian decomposition method combined with Chebyshev 

polynomial is introduced. The proposed interval Adomian method is then validated through ODE systems. The 

simulation results are applied on 4 practical case studies and the results are compared with interval Euler and Taylor 

methods. Final results show that the proposed methodology has a good accuracy to find the proper interval and to 

effectively handle the wrapping effect to sharpen the range of non-monotonic interval. 

 

Keywords-Interval Analysis; Adomian decomposition method; Chebyshev polynomials; Ordinary differential 

equations; Uncertainty. 

1.  Introduction 

Generally, during the mathematical modelling of a practical phenomenon, the corresponding parameters have 

considered as exact values. However, the parameters of these phenomena have some uncertainties. These 

uncertainties can be generated from different reasons like neglecting some nonlinear terms on the model, 

simplifications and etc. These uncertainties lead the researcher to solve problems in a wrong way and consequently, 

the final result will be wrong. There are different ways to illustrate these uncertainties [1]. Uncertainties can be 

modeled by probabilistic variables, fuzzy variables, interval variables, etc. But the most proper method is to use the 

interval arithmetic. In the interval arithmetic, uncertainties stand throughout a definite lower and upper bounds. In 

other words, although the uncertainties quantity is unknown, but an interval can be defined to them. Ordinary 

differential equations (ODEs) include a wide range of applications like the systems modelling, optimal control, etc. 

There are different techniques which are introduced to solve these types of systems.  

In the recent decades, decomposition methods have been shown as an effective, easy, and accurate methods to solve 

a great deal of linear and nonlinear, ordinary, partial, deterministic or stochastic differential equations by 

approximation. They have also rapid convergence to achieve accurate solutions [2-5]. 

Among these methods, Adomian decomposition method has been transformed to a popular technique for solving 

functional differential equations like ordinary differential equations [6], differential-algebraic equations [7], non-

linear fractional differential equations [8], delay differential equations [9], etc. 
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From the above, it is clear that the Adomian decomposition method is a proper method for solving the ODE systems. 

Now what happened if these systems have some uncertainties. In this study, an improved adomian decomposition 

method is introduced to achieve a proper and robust solution. The main idea is to find a proper interval bound which 

keeps the system stable even if the parameters are changed in the considered interval uncertainty.  

we also benefits from the Chebyshev orthogonal polynomial for simplify the complicated source terms to achieve 

more compressed solution rather than the Taylor series.  

 

2.  Interval arithmetic 

When we a mathematical model of an engineering system is build, there are always some simplifications; although 

simplification reduces the system complication, but it makes some natural uncertainties on the model. In other 

words, some uncertain coefficients are appeared in the model [10]. Hence, utilizing normal methods for modelling 

or solving these types of systems cause some problems. However, an uncertainty coefficient has unknown quantity, 

but it is bounded and can be considered in an interval. Interval arithmetic provides a set of methods to keep track 

these uncertainties during the computations [11]. The interval set for an interval number can be described as: 
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where, X  defines an interval integer over ( )I ¡  and x  and x are the lower and upper bounds respectively. The 

midpoint value, the width of interval number and the radius of an interval can be defined as: 
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w
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The basic interval arithmetic operations are described so that the interval guarantees the reliability of interval results. 

The main interval arithmetic operations between two interval numbers: 

(4) [ , ]X Y x y x y+ = + + 

(5) [ , ]X Y x y x y- = - - 

(6) [min{ , , , }, max{ , , , }]X Y xy xy xy xy xy xy xy xy´ = 

(7) / 1 / ,

1 / [1 / ,1 / ], 0 [ , ]

X Y X Y

Y y y y y

= ´

= Ï
 

(8) 
0, max( , ) , 2 , 0 [ ]

min( , ), max( , ) , 2 , 0 [ ]

[ , ], 2 1

n n

n n n n n

n n

x x n k x

X x x x x n k x

x x n k

ì é ùï = Îï ê úë ûïïï é ù= = Ïí ê úë ûïïï = +ïïî

 

The interval function F is an inclusion function of fi  f ( )X I" Î ¡ , ( ) ( )f F F XÌ . 

The main objective of this study is to find an interval function F from f to achieve an interval form of our method. 

 

3.  Chebyshev based Adomian Decomposition Method 

In the Adomian decomposition method, the unknown function (i.e. ( )y x ) is decomposed into an infinite series 
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, ,y y L are evaluated recursively. It is important to know that if the function has 

nonlinearity ( ( (x))N y ), it should be obtained by the following equation: 
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Consider an ordinary differential equation as follows: 



( ),Ly Ry Ny g x+ + =  (11) 

here, N describes the nonlinear operator, L defines the highest invertible derivative, R is the linear differential 

operator less order than L and g represents the source term. By applying the inverse term “
1L-
” into the expression 

Ly g Ry Ny= - - , we have: 

1 1( ) ( ),y f L Ry L Nyg - -= + - -  (12) 

Where the function f describes the integration of the source term and g is the given conditions. By considering the 

last equation, the recurrence relation of y can be simplified as follows: 

0

1 1

1 0 0

1 1

1

,

( ) ( )

( ) ( ), k 0
k k k

y f

y L Ry L Ny

y L Ry L Ny

g
- -

- -

+

ìï = +ïïï = - -ïï
í
ïïïï = - - ³ïïî

M
 

(13) 

Adomian decomposition theoretical convergence can be found in [12]. If the series converges to the considered 

solution, then 

lim ( ),
MM
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where, 
0

( ) ( )
M

M ii
y x y x

=
= å% [2].  

In [13], a new improved version of the decomposition method is introduced using Chebyshev approximation 

method. The illustrated method has overcome to the Taylor series in accuracy to expand the source term function.  

The advantage of the modified approach is verified through several illustrative examples. Since, in this paper, we 

expand the source term in Chebyshev series: 
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where ( )
i

T x represents the first kind Chebyshev polynomial and can be evaluated as follows: 
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Since, we have: 
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4.  Interval Adomian Decomposition with Uncertainty 

Consider the following ordinary differential equation (ODE) with considered interval initial conditions: 
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Where ( )1 1 2 3
, , , , ,

T

m
d d d d dD = K  is an uncertain parameters and [ , ], 0,1, ,( 1)

k k k
k nd d dÎ = +K . 

The main purpose of this paper is to introduce an interval version of Adomian decomposition method for solving the 

ODE problems with uncertainties. To do this, let consider a standard form as below: 
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The first step is to convert the system into the uniform mode,  
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Where the term ( ~ ) shows the division of the coefficients with 
n

d . For instance, b%is 
1 1

,
n

n n

b d b
d d

é ù
ê úé ù é ù é ù= ´ê ú ê ú ê ú ê úë û ë û ë û
ê úë û

. 

n
d is assumed non-singular, i.e. 0

n
dÏ . From the previous section, by using the given conditions we obtain: 

1 1( ) ( ),
n

Y P F L RY L Ny- -= + - -  (21) 
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P p p=  is an interval polynomial which has been achieved from the initial conditions as 
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P Y Y x Y x= + + +K . If the given conditions have the exact value, then [ , ]
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value in the interval analysis are so called degenerative intervals. The function F describes the interval integration of 

the source term. For computing the inverse operator of the source term we have: 
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Similar operation can be also utilized for achieving the linear and nonlinear differential operators. Since the total 

proposed Interval Adomian method can be formulated as follows: 
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And the source term can be achieved as: 
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5.  Illustrative examples 

To demonstrate the effectiveness of the proposed method, we give four different examples of linear and nonlinear 

ordinary differential equations. The algorithms are performed by Matlab 2013a. 

 

5.1.  Case study 1 

Consider for 1 1x- £ £  
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The problem above shows a differential equation where uncertainty in the coefficient  term([ ]d ), the initial condition

[ ]b is also uncertain and appeared the only thing we know is that it stands in an interval. 

The purpose of the solution is to find a region which includes all different values within the represented interval. 

According to the formula, 
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and finally the recurrence relation in below can be utilized to achieve the ( )Y x : 
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Since, the final solution can be achieved by: 
3 (2 1)

( ) [cosh( )] 0.1( 2 2 )[ 1,1].
3! (2 1)!

n
nx x

Y x x x
n

+

= + + + + -
+

K  
 

By calculating the problem in the time interval between 0 and 2 and same step size h = 0.4, the minimum and 

maximum value of y at each step is obtained and given in the table 1.  In this case, we also applied a random value 

in the considered interval and the results showed that the random solution is placed in the interval solution. We also 

compared the proposed method by the interval Euler [14] and Taylor methods [15]. Table 1 shows more details of 

this comparison. As it can be seen, the interval space in the proposed interval Adomian method achieves generally 

narrower interval than the others. 

 

<Table 1 here> 

5.2.  Case study 2 

In this example we consider a problem with more uncertainty both in the linear differential operator and the source 

term. Consider for 1 1x- £ £  
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Now using the Adomian decomposition method we get, 
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So, we have: 
7 5 3 7( ) [ 0.03 0.2 6 , 0.004 3 ]Y x x x x x x x= - + + + - + - + - +L L . 

 

<Table 2 here> 



From Table 2, we can say that Interval Euler method fails the interval in the ”time=0.4". it is also obvious that the 

proposed interval Adomian method has narrower interval rather than the interval Taylor method. 

 

5.3.  Case study 3 

Now, we consider a problem with complicated source term. Consider for 1 1x- £ £ , 
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Now using the Adomian decomposition method we get, 
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And finally with using 
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= å% the solution has been achieved. 

 

<Table 3 here> 

<Fig.1 here> 

 

from Table 3, it is obvious that the interval Euler and Taylor Methods fail their interval and don't include the random 

value, but the interval Adomian method includes the value.   

we also apply Chebyshev approximation to the source term of the interval Adomian method. As it can be seen from 

the fig.1 (B), Chebyshev polynomial gives us tighter interval and from the interval arithmetic, it has better 

performance rather than the Taylor series. Furthermore, it is important to know that the sometimes lower and upper 

bound have crossover with each other in some ODEs. In this situation, we should consider the general bound in 

between them as the reliability region.  

5.4.  Case study 4 

Consider the nonlinear ordinary differential equation for 0 1x£ £  
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So, Following the same illustrated approach, 
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<Table 5 here> 

 

Table 5 shows that interval Euler and taylor methods fail the interval from "Time=0.8”, but the proposed method is 

totally including the random value. 

 

6.  Conclusions 

The interval Adomian decomposition is introduced for solving differential equations with uncertainties. This 

approach provides a robust approximation of the solution. The main advantage of this approach over traditional 

numerical methods is that the proposed method is the first time which is used the interval arithmetic to provide a 

robust result for ODEs with uncertain coefficients. In addition, for increasing the system accuracy, Chebyshev 

polynomial is utilized for expansion the source term. 
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Tables: 

 

Table 1. The region bound achieved by the interval Adomian method and a limited random input for case study 1 

which is stand in the considered region. 

Time Interval Adomian 

Method 

Interval Euler’s  

Method [13] 

Interval Taylor 

Method [14] 

Random  

value 

0 [1, 1] [1, 1] [1, 1] 1.00 

0.4 [1.081, 1.164] [1.02, 1.16]  [1.04, 1.21] 1.081 

0.8 [1.337, 1.711] [1.20, 1.68] [1.25, 1.81] 1.337 

1.2 [1.810, 2.819] [1.57, 2.69] [1.66, 3.01] 1.810 

1.6 [2.576, 4.838] [2.17, 4.48] [2.34, 5.19] 2.577 

2 [3.755, 8.378] [3.09, 7.56] [3.4, 9.08] 3.762 

 

Table 2. The region bound achieved by the interval Adomian method and a limited random input for case study 2 

standing in the considered region. 

Time 
Interval Adomian 

Method 

Interval Euler’s  

Method [13] 

Interval Taylor 

Method [14] 

Random  

value 

0 [0, 0] [0,1] [0, 0] 0 

0.4 [1.826, 2.466] [2.23, 2.44] [1.20, 2.46] 1.826 

0.8 [3.850, 5.371] [3.55, 5.26] [2.40, 5.38] 3.850 

1.2 [6.457, 9.323] [4.98, 9.11] [3.60, 9.54] 6.457 

1.6 [10.271, 15.026] [6.59, 15.42] [4.80, 16.84] 10.271 

2 [15.943, 22.743] [8.51, 27.81] [6.00, 32.52] 15.943 

 

 

Table 3. The region bound achieved by the interval Adomian method and a limited random input for case study 3 

standing in the considered region.  

Time 
Interval Adomian 

Method 

Interval Euler’s  

Method [13] 

Interval Taylor 

Method [14] 

Random  

value 

0 [1, 1] [1, 1] [1, 1] 1 

0.4 [1.112, 1.126] [1.16, 1.50] [1.21, 1.54] 1.112 

0.8 [1.408, 1.439] [1.73, 2.32] [1.87, 2.44] 1.409 

1.2 [1.934, 1.986] [2.87, 3.64] [3.20, 3.91] 1.934 

1.6 [2.773, 2.858] [4.91, 5.71] [5.59, 6.23] 2.774 

2 [4.070, 4.202] [8.38, 8.92] [9.70, 9.86] 4.071 

 

Table 4. Adomian polynomials for Nonlinear terms 
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Table 5. The region bound achieved by the interval Adomian method and a limited random input for case study 4 

standing in the considered region.  

Time 
Interval Adomian 

Method 

Interval Euler’s  

Method [13] 

Interval Taylor 

Method [14] 

Random  

value 

0 [1, 1] [1, 1] [1, 1] 1 

0.4 [1.398, 1.401] [1.06, 1.37] [0.99, 1.33] 1.399 

0.8 [1.780, 1.819] [0.27, 0.95] [-0.67, 0.04] 1.781 

1.2 [2.092, 2.307] Divergent Divergent 2.092 

1.6 [2.234, 2.961] Divergent Divergent 2.235 

2 [2.042, 3.941] Divergent Divergent 2.043 

 

 

Figures: 

  
(A) (B) 

Fig.1. (A) The region bound achieved by the interval Adomian method and a limited random input which is stand in 

the considered region and (B) Comparison of the solution using Taylor and Chebyshev approximation for the case 

study 3. 
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