
2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

A Multiplataform Business Intelligence Solution for
Software Test Analysis

André Luiz Printes

Embedded Systems Laboratory
Universidade do Estado do Amazonas

Manaus, Brazil
aprintes@gmail.com

Daniel de Sena Fernandes
Embedded Systems Laboratory

Universidade do Estado do Amazonas
Manaus, Brazil

dsfernandes@hub-uea.org

Rubens de Andrade Fernandes
Embedded Systems Laboratory

Universidade do Estado do Amazonas
Manaus, Brazil

rfernandes@uea.edu.br

Israel Gondres Torné
Embedded Systems Laboratory

Universidade do Estado do Amazonas
Manaus, Brazil

itorne@uea.edu.br

Fabricio Ribeiro Seppe
Embedded Systems Laboratory

Universidade do Estado do Amazonas
Manaus, Brazil

fab.seppe@gmail.com

Yago Costa de Oliveira
Embedded Systems Laboratory

Universidade do Estado do Amazonas
Manaus, Brazil

yago.cst.oliveira@gmail.com

Abstract— This article discusses the development of a Business
Intelligence solution aimed at optimizing software testing analysis.
The proposal's main objective is to provide a more efficient
analysis of test results conducted during the development cycle of
Frontend, Backend, Mobile, and Web applications. To achieve
this, the solution integrates tools such as Google Sheets, Clickup,
and Power BI desktop. This approach not only facilitates data
management and visualization but also promotes more effective
collaboration between Quality Assurance and development teams,
enabling a more informed decision-making process based on
concrete and reliable data. Furthermore, the work emphasizes the
importance of the proposed resources in the continuous
improvement of the software development process and suggests
their replication in other contexts by adding new functionalities.

Keywords— Business Intelligence, Quality Assurance, test
management, PowerBI, ClickUp.

INTRODUCTION

In the realm of software product development, the testing
process plays a critical role, ensuring that the software operates
as expected, with a reduced number of failures and in
compliance with established requirements. In this context, the
application of Business Intelligence (BI) in the field of software
testing emerges as a solution to enhance test analysis, enabling
managers and Quality Assurance (QA) and development teams
to make more precise and informed decisions based on the data
resulting from test results analysis.

This understanding is supported by the contributions of the
authors in [1], who emphasize the importance of evaluating
software through rigorous testing. Through this, it becomes
possible to assess the software's quality by revealing defects,
system failures, and unexpected behaviors. These insights are
essential to ensure that the software meets both functional and
non-functional requirements, thus promoting a reliable and

satisfactory experience for users. Similarly, the authors in [2]
highlight the importance of Quality Assurance (QA), embraced
by the software testing community, as a methodical and planned
approach to ensure quality in all stages of the development cycle.
Through the application of disciplined methodologies,
transparent processes, and thorough testing, QA acts as a crucial
pillar in creating robust, reliable software that meets the needs
and expectations of users.

The literature presents various researches focusing on
applications within this theme, utilizing different approaches. In
[3], the authors developed a system for visualization and
analysis of purchase and sales data of products, based on the
Laravel framework and Python language. On the other hand, the
work in [4] proposed an application for software testing
management, highlighting failures and successes. In this
context, the authors of [5] developed a tool for analyzing
automated tests for web applications, using the Cypress
framework integrated with Pentaho software. Furthermore, in
the research [6], the authors presented the 4Testers tool, an
application that assists in the documentation and management of
software testing scenarios and scripts. The work in [7] proposed
a visualization approach to represent test case results and their
relation to object-oriented software systems. In [8], the authors
developed a visualization technique to represent software testing
results on object-oriented code elements, including method,
class, package, UML (Unified Modeling Language), and
system.

While the literature demonstrates significant advancements
in enhancing software testing, gaps related to the analysis of
results with accessible implementation, automation, and
evaluation tools persist. In this regard, this article focuses on
developing a BI solution to optimize the analysis and monitoring
of test results throughout the software development cycle. The
tool also aims to provide resources for analyzing the
performance of the development team and visualizing the status

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

of software product-related failures. The solution offers insights
into test coverage, result quality, and the efficiency of testing
activities, with the purpose of improving the development
quality of Frontend, Backend, Mobile, and Web applications.

One of the distinctive elements of this work is the integration
of easily accessible tools in the development of the solution,
including Google Sheets, Clickup, and Power BI desktop. This
approach facilitates team collaboration and simplifies usability,
maintenance, and data updates. With the implementation of this
system in a QA team, the goal is to enable managers, testers, and
developers to monitor the progress of tests more efficiently and
accurately. Additionally, they can identify areas of concern and
make informed decisions to enhance the overall quality of the
developed software.

To present the proposal of this work, we have divided the
prepared content into the following sections: Section II provides
a brief overview of theoretical concepts for the readers'
understanding. Section III displays the resources used and the
methodology proposed in this work. Finally, Sections VII and
IX present the results and conclusions obtained, respectively..

THEORETICAL REFERENCE

Quality Assurance

According to [9], Quality Assurance (QA) is defined as a
systematic and planned set of activities that ensure that the
processes and products related to software development meet
established requirements, standards and procedures. QA
involves the implementation of methods, techniques, and tools
aimed at ensuring that the software is produced consistently,
reliably, and of high quality.
The Quality Assurance (QA) approach permeates all stages of
the software development lifecycle, from the initial planning
stage to product delivery. As emphasized in [10], the essence of
QA spans from simple defect identification to proactive
prevention through the adoption of good engineering practices,
methodical processes, and continuous reviews.

Business Inteligence

Business Intelligence (BI) involves transforming raw data into
meaningful and actionable insights to guide effective decisions.
As outlined in [11], BI encompasses a systematic and strategic
approach to collecting, processing, analyzing, and providing
resources for data visualization from a variety of sources. Its
presence is central in modern business environments, where
data-driven decision-making is crucial for success.

Scrum Methodology

The Scrum methodology, an agile project management
approach, has gained prominence in software development
literature due to its effectiveness in promoting iterative and
collaborative deliveries [12]. Scrum operates in cycles known
as "sprints”, each lasting two to four weeks. During a sprint, a
multifunctional team works on selected tasks from a product
backlog. Monitoring progress is facilitated through daily
meetings, where team members share updates and identify
obstacles. In [13], the authors emphasize the importance of the
Scrum Master, Product Owner, and Development Team roles,

as well as the need to maintain a well-managed product
backlog.

THEORETICAL CONCEPTS

Development Environment

The solution proposed in this work was developed on a local
server with a 12th generation Intel Core i7 processor, 16 GB
DDR4 RAM, and a 512 GB SSD. However, the tool is made
available for cloud access to enable remote access to desired
information and reports from anywhere, providing
geographical independence for the offered resources.

Tools and Technologies definitions

Initially, a detailed survey of the requirements for the proposed
solution was conducted in collaboration with the QA and
development teams. This process involved meetings,
interviews, and analysis of previous information to understand
the needs and expectations regarding the tool proposed in this
work. Based on this, the technologies and tools to be used were
defined.
Power BI was chosen as the main tool for building the
dashboard of the proposed solution due to its data visualization
capabilities and integration with other data sources. On the
other hand, Google Sheets was selected to organize and store
information on test cases and bug reports, facilitating
collaboration and data updates. Additionally, the software
Clickup was chosen as the tool for reporting bugs to the
development team. Concepts and additional functionalities of
the proposed software tools will be detailed below.

Power BI Desktop: A local application that allows the

extraction, transformation, and visualization of data related to

corporate process value chains [14]. In addition to the capability

to extract data from various sources, this software enables the

development of reports and visual collections that can be shared

with other individuals in an organizational environment.

Google Sheets: A cloud-hosted web application for

collaborative online editing and creation of spreadsheets [15].

Additionally, this application provides users with features to

import and export spreadsheets in various formats, including

files compatible with Microsoft Excel and CSV (comma-

separated values) files. Google Sheets also offers the ability to

create forms and surveys directly within the spreadsheets,

allowing for the organized and automated collection of data and

responses.

ClickUp: Software designed to enhance the productivity of

development teams, developed with the purpose of improving

company productivity [16]. It provides graphical features for

intuitive report and backlog creation, optimizing management

processes in the corporate environment.

DEVELOPMENT METHODOLOGY

The development of the proposed tool followed an iterative and
incremental approach, in alignment with best practices of agile
development. Throughout this process, collaboration between
the QA team and software developers played a central role in
structuring the solution. Based on this, it was possible to define

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

the visualizations for displaying software test results and
implement the necessary features to meet the established
objectives. Figure 1 illustrates the architecture of the proposed
tool with the respective integrations of the software tools used
within the desired functionality flow of the solution.

Figure 1: Architecture of the proposed solution.

Next, we will detail the key aspects of the proposed solution as
depicted in Figure 1:

Test cases:

Test cases are conditions developed to implement tests in the
software appropriately and ensure that the product aligns with
the established requirements. They should specify what needs
to be analyzed and the expected results, aiming to uncover
potential defects in the software. In the architecture of the
proposed solution, test case handling processes were included,
interconnected to generalize the tool for other systems and
applications. The test case processes incorporated into the
proposal were:

Test cases creation (A):
In this work's solution, the test creation process followed a
structured approach based on predefined software requirements
and business rules. For each test case, a thorough analysis of the
requirements was conducted to fully understand the software's
functionalities and objectives under examination. The
documentation of these cases is recorded in Google Sheets
(Database).

Test cases automation (B):
The automation of test cases is based on the previously
established test cases. We used the details as a starting point to
develop automation scripts. This allowed us to reproduce the
same test scenarios in an automated manner, ensuring
consistency and saving time in this process. The progress and
records of the automation process results are also logged in
Google Sheets.

Test cases execution (C):
During the test execution, we provide the inputs specified in the
automated test cases and register the outputs generated by the

software. By comparing these outputs with the expected results,
we identify discrepancies and potential issues. As a result, we
can effectively detect and report failures, contributing to the
ongoing maintenance of software quality.

Test cases registration (D):
The register of tests and execution results are done in the
Google Sheets tool. The records include the date and time of
execution, the provided inputs, the outputs generated by the
software, and their respective results.

Flaws:

Software failures stem from errors, defects, or issues that lead
to undesirable behaviors, vulnerabilities, and other types of
malfunctions. The proposed solution includes processes for
handling failures, described as follows:

Flaws registration (E):
In cases of failures in test results, the results are reported in the
Clickup tool for issue tracking. The log includes identifications
of the failed test cases, the current state of the problem, priority,
and the individual responsible for resolution.
Through this process, we ensure that issues identified during the
testing process are properly documented, tracked, and
forwarded for resolution.

Flaws fixing (F):
In the process of correcting failures, once a failure is recorded
and documented in the Clickup tool, the team responsible for
fixing takes charge of corrective actions. After the necessary
corrections, the test case is executed again to validate if the
failure has been rectified.

Tools used:

Based on the previously mentioned testing processes, the flow
of generated information moves between the tools used and
towards the monitoring dashboards. To achieve this, it's
essential to understand how the integration of these tools was
carried out during the process. The integration of Clickup with
Google Sheets was accomplished by configuring Application
Programming Interfaces (APIs) and implementing Extract,
Transform, Load (ETL) processes to handle data appropriately
(7). This allowed the failure data recorded in the Clickup tool
to be inserted into Google Sheets.

DEVELOPMENT OF SOLUTION’S DASHBOARDS

The dashboards were developed using the Power BI tool to
analyze the test results in the software development cycle,
aiming to present and facilitate the understanding of relevant
test information. Initially, the team outlined the structure of the
dashboards, identifying crucial information to be displayed
based on the data in Google Sheets. Based on the collected
requirements, charts, filters, and visualizations were selected to
display and select data in a clear and synthesized manner. The
filters include the selection of test status, severity of failures,
and test execution date. Next, we will detail the objectives and
functionalities of the dashboards indicated in Figure 1.
Test Analysis Dashboard:
In the overall test analysis dashboard (Figure 2), you can view
the total values of different test categories, including manual
tests, automated tests, frontend tests, backend tests, mobile

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

tests, and web tests. Additionally, there is a pie chart
representing the overall status of manual tests. The panel also
includes two clustered bar charts to display test sessions for
both backend and frontend, along with a clustered column chart
that shows the overall status of automated tests. To enhance
data visualization, the panel is equipped with corresponding
filters.
Developers Team Performance Dashboard:
In the performance dashboard (Figure 4), for developers, you
can view the quantity of failures attributed and resolved by each
developer in pie charts. Additionally, there is a clustered
column chart showing the average resolution time of failures by
severity for each developer. The panel also includes a Gantt
chart for temporal analysis of failure resolution, providing a
clear view of performance over time.
QA Team Performance Dashboard:
In the QA Team Performance Dashboard, you can view
essential information about the performance of each QA
member, including the total accumulated test creation by
member, the total accumulated automated test creation by
member, and the total accumulated test executions per member.
Additionally, the panel includes a stacked area chart
representing the temporal evolution of test cases, executions,
and automations performed by each collaborator. The number
of failures reported by each member is also visible in the
dashboard.

I. Solution’s Test and Validation
The proposed solution underwent a series of tests to ensure its
functionalities. Initially, integration tests enabled the analysis
of interactions between the different software elements used to
ensure the proposed functionalities. Additionally, usability tests
were conducted to confirm that the system meets not only the
predefined requirements but also the high expectations of the
QA team and end-users. Next, details of the procedures for
system validation are presented:

• The integration tests among Google Sheets, ClickUp, and
PowerBI were manually conducted, focusing on verifying
functionalities related to data manipulation,
synchronization, data transmission, interface updates, and
database operations. This meticulous approach ensured
that the integration of the platforms used in our proposal
effectively contributes to providing accurate information to
the dashboard.

• Conversely, during usability testing, both the QA and
development teams critically assessed the dashboard’s
interface for navigability, efficiency, and its ability to
provide information in a clear and comprehensible manner.
Based on this assessment, we made enhancements to the
proposal pertaining to usability, intuitiveness of filtering
functionalities, readability of charts, and ease of data
access. The usability tests significantly contributed to an
efficient analysis of test results in the software
development cycle.

RESULTS

Figure 2 showcases the main page of the test analysis
dashboard. The pie and column charts depict the distribution of
tests per category, encompassing both manual and automated
tests for frontend, backend, mobile, and web applications. This
visualization facilitates a quick and comprehensive analysis of
test coverage across various areas of the system. The pie chart
illustrates the overall test status, representing the proportion of
tests that passed, failed, are blocked, or have not been executed.
This visualization allows the team to promptly identify the
overall software quality and critical areas that require
immediate attention. The dashboard also incorporates a funnel
chart, illustrating the progress concerning reported failures at
different stages. This visual representation has proven pivotal
in understanding and enhancing the efficiency of the failure
resolution process, resulting in a substantial reduction in the
time required to troubleshoot in software development.

Figure 2: Test Analysis Dashboard.

Figure 3 illustrates essential metrics related to the individual
performance of software testing team members. These critical
pieces of information encompass the total accumulated tests
created by each tester, the total accumulation of automated
tests, and the total accumulation of test executions.
Furthermore, this panel is enriched with stacked area charts that
provide a visual representation of the evolution over time
concerning test case-related activities. This chart not only tracks
test creation but also their execution and automation
implementation. Moreover, it displays the progression of the
number of test cases, executions, and automations, enabling an
in-depth analysis of trends and patterns throughout the software
development cycle.

Figure 3: QA Team Performance Dashboard.

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

Figure 4 provides insights presented in pie charts illustrating the
quantity of failures attributed to and resolved by each
developer. Additionally, there is a clustered column chart
offering an analysis of the average resolution time of failures
categorized by severity. This allows for a clear understanding
of each team member's performance over time. Within the same
panel, we have also included a Gantt chart, offering a temporal
analysis of failure resolution. This visual representation enables
an effective visualization of progression and efficiency in
failure resolution, providing a clear view of individual and
collective performance over time.

Figure 4: Developers Team Performance Dashboard.

In addition to providing a more comprehensive representation
for evaluating test results, the implementation of the proposed
solution has resulted in several notable achievements that have
bolstered the effectiveness and quality of the software
development cycle:

1. More informed and well-founded decisions through

attractive visualization of the obtained results;
1. Continuous and dynamic monitoring of test results,

keeping the software development team updated on test
progress and failure resolution;

2. Optimization of resource allocation by directing testing
efforts towards more critical areas;

3. Enhancement of software quality through the results
provided by the solution.

4. Enhancement of engagement and collaboration among QA
team members and software development.

CHALLENGES FACED AND STRATEGIC OVERCOME

During the development of the solution, the QA and
development team encountered several significant challenges.
The integration of data between platforms represented a critical
milestone in the project, aiming to facilitate the development of
a framework with minimal complexity, utilizing well-
established software solutions. To achieve this, it was necessary
to establish an efficient connection between Clickup and Power
BI, ensuring data integrity and robust updating of information
on the dashboard to guarantee precise and reliable analysis. In
terms of customization and interactivity, the implementation of
a filter modal and interactive features posed technical and
design challenges. Maintaining the fluidity and usability of

these functionalities became a priority, with a focus on
delivering an optimized user experience. Finally, adherence to
the team's needs emerged as a central challenge. The project
required an iterative and collaborative process of collecting
feedback from the management and development team to
ensure that the solution was meticulously aligned with the
team's needs, as well as the specificities of the organization's
development cycle. This collaborative, user-centered approach
proved to be fundamental for the successful implementation of
the solution.

CONCLUSION

The proposed solution has emerged as a transformative tool in
the context of the software development cycle, working towards
continuous improvement and informed action. This resource
provided the QA and development team with a precise and
comprehensive view of test results, enabling data-driven and
reliable decision-making. The seamless integration between
Google Sheets, Power BI, and Clickup not only facilitated
dynamic test tracking but also fostered a synchronized
collaborative environment among team members, enhancing
their collective efficiency. Furthermore, the high level of
customization of the tool allowed users to engage more deeply
with the data, streamlining the identification of problematic
areas and enabling quick and effective interventions.
In summary, the dashboard has been established as an essential
tool, allowing the development team to navigate the complex
software creation process with greater clarity, confidence, and
competence, closely aligning the product's quality with the high
expectations set for the project. For future solutions, we propose
replicating the proposed tool for other cases and systems, as
well as specifying new functionalities for evaluating software
test results.

REFERENCES

[1] Kane L, Liu V, McKague M, Walker G (2023) An
experimental field comparison of wi-fi halow and lora for the
smart grid. Sensors 23(17):7409
[2] Graham D, Black R, Van Veenendaal E (2021) Foundations
of softwaretesting ISTQB Certification. Cengage Learning
[3] MOTA AFE (2021) Técnicas de bi aplicados em sistema de
dashboard
[4] Dzidic E (2023) Data visualization of software test results:
A financial technology case study
[5] Campos MM, da Silva EdO (2023) Implementação de uma
ferramenta de análise de testes automatizados para aumento de
produtividade em um ambiente de desenvolvimento. Caderno de
Estudos em Engenharia de Software 5(1)
[6] GONC ̧ ALVES J, SILVA SR (2020) 4 testers:
documentacão e gerenciamento de testes de software
[7] Hammad M, Otoom AF, Hammad M, Al-Jawabreh N, Abu
Seini R (2020) Multiview visualization of software testing
results. International Journal of Computing and Digital Systems
9(1)
[8] Otoom AF, Hammad M, Al-Jawabreh N, Seini RA (2016)
Visualizing testing results for software projects. In: Proc. of the
17th International Arab Conference on Information Technology
(ACIT’16), Morocco

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

[9] Rosak-Szyrocka J, ywiolek J, Shahbaz M (2023) Quality
Management, Value Creation, and the Digital Economy. Taylor
& Francis
[10] Immonen M (2023) Java-sovelluksen
kestavyystestausprosessin automati-sointi
[11] Basile LJ, Carbonara N, Pellegrino R, Panniello U (2023)
Business intelli-gence in the healthcare industry: The utilization
of a data-driven approachto support clinical decision making.
Technovation 120:102,482
[12] Kadenic MD, Koumaditis K, Junker-Jensen L (2023)
Mastering scrum with a focus on team maturity and key
components of scrum. Information and Software Technology
153:107,079
[13] Verwijs C, Russo D (2023) A theory of scrum team
effectiveness. ACM Transactions on Software Engineering and
Methodology 32(3):1–51
[14] Power B, Excel U, Desktop P, Tiles P (2021) Microsoft
power bi. Available here: https://powerbi microsoft com/en-us
130
[15] Dong E, Ratcliff J, Goyea TD, Katz A, Lau R, Ng TK,
Garcia B, BoltE, Prata S, Zhang D, et al (2022) The johns
hopkins university center for systems science and engineering
covid-19 dashboard: data collection process, challenges faced,
and lessons learned. The lancet infectious diseases 22(12):e370–
e376
[16] Garcia EJ, Chadha S, Duan X, Alhmod M, Singh J, Ahmad
MA (2023) Group project: Report-building an olympic stadium.

	INTRODUCTION
	Theoretical Reference
	Quality Assurance
	Business Inteligence
	Scrum Methodology

	Theoretical concepts
	Development Environment
	Tools and Technologies definitions
	Power BI Desktop: A local application that allows the extraction, transformation, and visualization of data related to corporate process value chains [14]. In addition to the capability to extract data from various sources, this software enables the d...
	Google Sheets: A cloud-hosted web application for collaborative online editing and creation of spreadsheets [15]. Additionally, this application provides users with features to import and export spreadsheets in various formats, including files compati...
	ClickUp: Software designed to enhance the productivity of development teams, developed with the purpose of improving company productivity [16]. It provides graphical features for intuitive report and backlog creation, optimizing management processes i...

	Development Methodology
	Test cases:
	Test cases creation (A):
	Test cases automation (B):
	Test cases execution (C):
	Test cases registration (D):

	Flaws:
	Flaws registration (E):
	Flaws fixing (F):

	Tools used:

	Development of Solution’s Dashboards
	Results
	Challenges Faced and Strategic overcome
	Conclusion
	references

