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Abstract— FPGAs offers a very affordable platform for high-

performance computation, while allowing lots of flexibility to 

perform easy in-field reconfiguration. The easy reconfiguration is 

achieved by using a memory that holds all the configuration bits 

allowing for the FPGA internal elements be interconnected to 

perform custom functions and in most cases this memory is of the 

SRAM type. A bit flip in this memory could potentially cause a 

misconnection or changes in the implemented circuit and the 

final computation could be impacted. This makes the Errors 

detection and correction in the configuration RAM (CRAM) an 

important feature of systems exposed to harsh environments. 

This paper presents a base platform that uses Xilinx’s IPs and 

features of the 7 Series Zynq device to inject, detect, and correct 

errors while the system allows the dynamic partial 

reconfiguration (DPR) for run time changes in response to 

application requirements. The study presented in this paper uses 

the premise of using a COTS device, without being radiation-

hardened, lowering the cost of the implementation, and allowing 

the deployment of non-safe-critical devices that still can perform 

under the threats imposed by the surrounding environment. The 

results found in this paper shows that the memory cache 

improves the overall performance of the DPR and hardware 

acceleration more than 300 times in some situations. Automatic 

Error Injection showed that less than 0.05% of the bit flips 

caused errors in the logic operation results. 

Keywords— SoC, FPGA, COTS, soft error mitigation (SEM), 

dynamic partial reconfiguration (DPR) 

I.  INTRODUCTION 

The increasing necessity for higher computation 
performance and flexibility, allowing upgrade and repurposing 
of the in-field deployed devices, presents a good usage for 
Systems-on-Chips (SoCs). These devices packs, in the same 
component, an FPGA, one or more processors, different types 
of communication buses and many other devices for 
Input/Output of data. 

The most common way of reconfiguring an FPGA is using 
a flash memory to store a bitstream, generated by the vendor’s 
tool, that contains all the configuration bits that will implement 
the final logic circuit. During boot, the FPGA SRAM memory 
is programmed with this bitstream and then the FPGA fabric 
will start to act as intended by the user’s logic implemented. 
This brings an easy way to reprogram the device but makes the 
component more susceptible to bit flips (single event upsets). 

Xilinx claims [4] that their devices are only susceptible to 
single event effects caused by ionization radiation. 

When the radiation hits an SRAM cell it can flip the value 
of a bit, if the flipped bit is used (essential) in any way by the 
design, it could alter the functionality of the circuit configured 
by that cell. 

Another possible upset is the latch-up, which can short 
circuit power rails, and then the device should be power cycled 
to avoid being damaged or even destroyed. 

Although the radiation levels are worse in space, even at 
earth’s surface or at higher altitudes (aviation) the devices are 
susceptible to bit flips caused by radiation, so this kind of error 
mitigation has more application than only in space programs. 

For soft error mitigation, memory scrubbing is one such 
technic, and extensively studied [8,9]. This paper uses an 
option provided for free within the Xilinx’s tool suite, the SEM 
IP (Soft Error Mitigation Controller Intellectual Property) 
Controller [5]. 

Aside from memory scrubbing, there are other options for 
error correction, like full or partial reconfiguration [7]. The 
main downside of total reconfiguration is the time the system 
will be unavailable due to the reconfiguration, so partial 
reconfiguration reduces dramatically the downtime because 
only a small portion of the device/design will change. 

Partial reconfiguration has other roles, one of them is to 
give a new function to the same area of the FPGA, for 
example, changing a filter type or the arithmetic operation 
being executed. Another important role of DPR in embedded 
systems is to upgrade the device while other vital function is 
still being executed. One example is the reconfiguration of a 
device that is connected to a computer through a PCIe 
interface. In a entire FPGA reconfiguration, the PCIe channel 
will stop communicating with the computer and the computer 
will need to be rebooted in order to recognize (enumeration 
process) the PCIe device again, with DPR it is possible to 
reprogram just the area that is used for some other logic and the 
PCIe interface continues its normal operation, in this case the 
PCIe interface can be used to receive this new bitstream an 
reconfigure the device’s memory [6]. 



2023 Brazilian Technology Symposium 

ISSN 2447-8326. V.1 © 2023 BTSYM 

A. Motivation 

Embedded systems are commonly deployed in harsh 
environment with minimal or no intervention and normally 
stays with an online operation for a long period between resets, 
in this case, the effects of the radiation are most critical, 
because the chances of an upset in an essential bit are higher 
and the impact in the operation more probable. 

Systems that should operate long times between power 
cycles should have mechanisms for soft error mitigation. 

Dynamic partial reconfiguration could be used for error 
correction and to upgrade functions while others continue its 
operation without being disturbed. 

Most studies present each subject used separated from each 
other and the ones that implement both, normally implements 
in a fabric-only device and most of the time in older 
technologies, without using the ARM processor. 

B. Related Work 

 Bruijstens [9] is the only reported work that presents SEM 
together with DPR in a Zynq 7000 device. Keshk and Asami 
[10] presents both subjects together but using a fabric-only 
device. 

II. BASE PLATFORM´S ARCHITECTURE 

A. High Level Overview 

The core of the architecture is the Xilinx’s Zynq 7000, 
which is an SoC that has a dual-core ARM A9 and an FPGA 
fabric in the same die. 

The proposed architecture, Figure 1, should be used as a 
base design for implementing DPR for hardware coprocessing 
and acceleration while being constantly monitored for soft 
errors and device’s health, such as temperature and voltage. 

Those characteristics makes the platform suitable to be 
deployed in harsh environments, mainly in non-critical 
instruments or communications [8]. 

B. Soft Error Mitigation 

To protect SRAM-based FPGA, Xilinx’s SEM IP is being 
used in this platform. The controller can be accessed from a 
serial console and provides the status of the configuration 
memory, injection of errors and operational status. 

It is possible to communicate with the controller using the 
AXI Bus of the processor, but for this study an external UART 
was attached to the design, providing an easy way to use an 
external PC with a script to inject error and check how the 
platform behaves. 

C. Dynamic Partial Reconfiguration 

Dynamic partial reconfiguration is performed through the 
ARM´s PCAP port. 

The full or partial bitstream is loaded to the processor 
DDR, then using DMA, the file is transferred to the 
configuration memory of the PL using the PCAP port. 

D. Device´s health monitoring 

Using the XADC present in the Xilinx’s 7 series, the 
temperature and voltages of the device are monitored and can 
be presented to the operator by a drop-down menu presented on 
the serial console. 

The temperature and voltages being monitored with the 
XADC are internal values from the SoC. 

 Since the XADC doesn’t measure current consumption, the 
addition of external sensors should be added to ensure that 
latch-ups could be detected to improve the reliability of the 
platform. 

 

Fig. 1. Block Diagram Representation of the proposed platform 
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III. DPR AND SEM IN THE SAME PROJECT 

A. Configuration Ports 

In Zynq [3], the processor sub-system has control, at power 
up, of all configurations to the PL using the PCAP port. The 
system is designed this way mainly because of two factors. The 
first one is improving the overall security of the design, 
allowing the ARM processor TrustZone to control the 
configuration port, only allowing trusted devices access the 
FPGA ICAP port to configure the device memory, and the 
second is allowing the FPGA´s configuration at boot time 
using the ARM’s first stage bootloader (FSBL). 

The selection of the interface in control of the FPGA 
configuration is made by a 2:1 mux, controlled by the 
PCAP_PR register, as in figure 2. 

After initial configuration (or at any time), the processor 
may set the control bit to switch the configuration interface to 
be accessed internal to the FPGA fabric, then ICAP becomes 
active. 

As in figure 2, the SEM controller uses the ICAP port to 
perform the CRAM’s scrubbing. So, after the initial 
configuration, the processor should release the PCAP and pass 
the control to ICAP, permitting the SEM controller monitor, 
detect and correct errors caused by radiation. 

If the processor needs a partial reconfiguration in some area 
within the fabric, it will need the PCAP control back.  

When using the SEM Controller, this action is not as simple 
as changing the mux [11,12] configuration, the following 
actions should take place: 

1. Put the SEM IP in IDLE mode. 

2. Send a SYNC command, stopping the SEM IP 
frame´s error scanning. 

3. Select the PCAP port and perform the dynamic 
partial reconfiguration. 

4. After the DPR operation is done, transfer the 
control of ICAP back to SEM IP. 

5. Perform a soft reset on SEM IP. 

Put the SEM IP in OBSERVATION mode. 

 
Figure 2 shows the interfaces that were developed to decouple 
the SEM IP from the ICAP, switching the control to PCAP 
perform the partial reconfiguration. The items in yellow 
permits that steps 2 and 4 are correctly executed. 

To stop SEM IP scanning, the controller should be 
configured to the Idle mode and a SYNC word command, 
should be sent through the mux to the ICAP. This is 
accomplished using the output of the “ICAP Sync controller” 
block that sends the value “0x5599AA66”. 

When the DPR is finished, the PCAP can switch the control 
back to SEM controller. This is accomplished commanding the 
“icap_sel” value and configuring the mux to connect the SEM 
IP with the ICAP. 

After a partial reconfiguration is performed, before the 
SEM IP return to the observation mode it is necessary to 
perform a soft reset in the controller, recalculating the FRAME 
ECC of the CRAM. 

If one commands the SEM IP back to the observation mode 
without the soft reset, the controller will detect the 
reconfiguration as SEUs and will try to correct them.  

If one do not change the SEM IP to the idle mode prior to a 
DPR, it will continue in observation mode then during partial 
reconfiguration the changes in the CRAM will be understood 
as SEUs and the SEM IP will try to correct those bit flips, 
potentially entering in a loop of error correction and 
reconfiguration, resulting in a failed reprogramming of the 
area. 

It is important that all PCAP or ICAP operations are 
completed before switching the control between them. 

Figure 2 shows that JTAG has precedence over both ports, 
so care should be taken when using the JTAG together with 
PCAP and ICAP, avoiding interference between the ports.  

IV. BASIC PARTIAL RECONFIGURATION FLOW 

A. DPR project flow 

Dynamic Partial Reconfiguration (DPR) flow is supported 

by Vivado, but not yet fully integrated with the GUI-based 

project flow [6].  

The designs are implemented using the Vivado Tcl based 

command flow or using a combination of Tcl commands and 

the GUI. 

To facilitate the reproduction of the results and provide a 

base configuration for other studies using this architecture, a 

set of scripts were developed to create a project with two PR 

modules, implementing the following steps: 

 
1) Create the project and block design. 

a) The block design should contain the ARM 
processing system instance. 

b) The reconfigurable items should have only the 
interface definitions declared in this step. 

2) Synthetize the design, generating all the design 
checkpoints (DCP) for the static region and blocks of 
logic. 

3) Load the DCP for static and one of the reconfigurable 
partitions (RP). 

4) Define RP properties. 

5) Run Design Rule Checker (DRC). 

6) Create and implement first configuration. 

7) Create all other configurations. 

8) Verify all configurations (PR_verify command). 

9) Generate bitstreams. 
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V. HARDWARE ACCELERATION AND HIGH LEVEL 

SYNTHESIS HLS 

Hardware acceleration takes advantage of the 
reconfigurable device and could be used to offload 
computations from the processor to hardware’s blocks, 
improving the execution time and freeing the processor to 
perform other actions and get the results when available. 

High Level Synthesis (HLS) flow is supported by Vivado 
and could be fully addressed using the GUI or Tcl commands. 

HLS provides the ability to design the algorithm using 
C/C++ language and using the tool, translate that for an RTL 
design in VHDL or Verilog. 

This study takes advantage of HLS, implementing a 32x32 
Matrix multiplication and the following steps should be 
performed to create the RTL: 

1. Creation of C code and C testbench, describing 
and testing the accurateness of the design. 

2. C functional Verification, using Vivado HLS 
tool. 

3. HLS, using the user constraints. 
4. C/RTL CoSimulation. 
5. Implementation Evaluation 
6. RTL IP export 

VI. AUTOMATIC ERROR INJECTION 

Xilinx 7 series SRAM-based FPGA has three main types of 
memory embedded within the device (1) configuration memory 
(CRAM), (2) block memory (BRAM) and (3) distributed 
memory (DM). 

The design functionality is loaded in the CRAM, using the 
bitstream file, which is arranged in frames, protected by error 
correction code (ECC) and cyclic redundancy check (CRC). 

Frames are the smallest addressable segment in the FPGA 
CRAM, consisting of 101 configuration words of 32 bits each. 

Design functionality will change its behavior if one or more 
essential bits are flipped, characterized as critical bits. 

The device’s bitstream size is fixed and represents all the 
configurable hardware present in the device and accessible to 
the user logic design and includes all the memory configuration 
(CRAM, BRAM, DM) in its size.  

SEM IP perform scrubbing only in CRAM and the essential 
bits count will be smaller than the bitstream. For error 
mitigation in the other memories, triple modular redundancy 
(TMR) voting, ECC or CRC could be applied in the user logic 
to correct error in BRAM and DM. 

The device used in this study has 25697632 essential bits, 
but the design will not use all those bits [4], so an automatic 
test could (1) inject a bit flip in a random address or (2) inject 
error in all address within a small block of the device. This 
study uses the second technic. 

During the implementation flow of the DPR design, it is 
constrained the position of the PR in the device, using a 
primitive of the Vivado toll called “pblock”. With the 
coordinates of this block, Aranda and Maestro [13] 
demonstrate how to calculate the essential bits address 
contained in that region. 

Using the above method, it was discovered 70182 essential 
bits in the PR region, so an automatic test could focus on bit 
flip injection inside that region, checking the design behavior 
and result. 

Fig. 2. Configuration ports and paths for the PL’s CRAM 
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Figure 3 presents the architecture used, where a Python 
script sends the bit flip address to SEM IP and check the result 
of the hardware multiplication against a similar one performed 
in software, using the ARM A9 core. The script then writes a 
test report, saving the address and the result of the comparison, 
where “0” means both results matches or “1” when the 
hardware result does not match with the software counterpart. 

VII. RESULTS 

A. Hardware Coprocessing 

Multiplication is a commonly used arithmetic computation, 
present in most embedded devices performing digital signal 
processing. 

It was implemented two hardware coprocessing versions 
evaluating the acceleration factor against the same calculation 
in a processor using multiplication in software. 

The first implementation used the AXI Lite 4 and a single 
multiplication operation in hardware. Table I presents the 
execution time of 1024 multiplications, in SW and HW. 

TABLE I.  HW VS SW SINGLE MULTIPLICATION 

 Time (us) 

Hardware 2320 

Software 346 

 

It is clear, in this case, that using AXI Lite 4 to perform 
multiplication is approximated 6.7 times slower than the code 
executed in software. The main reasons for this are (1) the 
ARM runs at 650MHz and the Hardware at 100MHz, almost 
the same factor detected in the time execution and (2) the AXI 
Lite 4 has a bigger overhead and is not designed for 
transactions with a lot of data being moved inside the FPGA. 

For comparison, using the HLS flow it was designed a 
second version that performs a 32x32 matrix multiplication 
algorithm, using the AXI Stream interface. 

The AXI Stream is designed for moving high volume of 
data with minimal overhead in its protocol. The design 
implemented uses DMA to move data in and out of the 
processor. Table II presents the execution time of an 32x32 
matrix multiplications, in SW and HW. 

TABLE II.  HW VS SW 32X32 MATRIX MULTIPLICATION 

 Time (us) 

Hardware, cache enabled 53 

Software, cache enabled 1567 

Hardware, cache disabled 69 

Software, cache disabled 24099 

 

It is clear, in this case, that using AXI Stream improves the 
computation and achieve the hardware acceleration pretended, 
offloading the ARM processor.  When using the DDR’s 
memory cache, the improvement of the hardware coprocessing 
is approximately 30 times and 350 times with disabled caches. 

B. Automatic Error Injection 

In VI, it was presented that the number of injections was 

dramatically reduced, focusing in the area where the 

multiplication hardware is implemented. Table III presents the 

results from the performed injections. 

TABLE III.  INJECTION STATISTICS 

Total of Frames with essential bits in the PR 70182 

Total of Injections executed 21935 

Erroneous multiplication result  7 

Injection with AXI Bus locked 126 

 

From table III, the frames that contain essential bits inside 

of the PR region is only 3.66% of the total essential’s bits of 

the device. 

Table III shows that it was injected approximately 30% of 

the addresses with essential bits, this happened because after 

this, the injected errors started to hang up the processor when 

the AXI bus was accessed. Because of this behavior, the script 

was finished, as it is not conclusive when the AXI Bus hangs, 

the result is not show, and it is considered a critical failure. 

From those injection, only 7 addresses presented an 

erroneous multiplication result, and this was caught comparing 

the result of the HW multiplication against the same operation 

coded in software. 

Figure 4 shows an excerpt of the automatic test report 

generation, presenting the address of the bit flip and the result 

of the device under test (DUT), in this case the multiplier, 

were a “0” means that HW and SW results are equal, Figure 5, 

and a “1” indicates that the HW result is different from the 

SW, Figure 6. 

C. Dynamic Partial Reconfiguration 

TABLE IV.  PARTIAL RECONFIGURATION TIME 

 
Time (us) 

Throughput 

(Mb/s) 
Cache 

First DPR 897 143 Enabled 

All others PR 1.35 95195 Enabled 

First DPR 1186 108 Enabled and invalidated 

All others PR 576 222 Enabled and invalidated 

First DPR 984 130 Disabled 

All others PR 6 21117 Disabled 

 

Fig. 3. Automatic error injection architecture 

 



2023 Brazilian Technology Symposium 

ISSN 2447-8326. V.1 © 2023 BTSYM 

 Sultana [7] mentions that PCAP theoretical throughput is 
400Mb/s, using the 32 bits platform, achieving an average of 
140Mb/s, that is not far from the results obtained in this study. 

 Table IV shows that when the first PR is performed, the 
throughput is closer to the theoretical and from the second and 
beyond, within some configurations, the speed is unreal. This 
was narrowed down as a side effect of the small bitstream 
used in the PR and the Zynq´s DDR cache. The cache, when 
enabled, presents almost 96Gb/s of write speed, but when the 
cache is enabled and commanded to invalidate its contents 
before each PR, the speed goes closer to the average and lower 
than the theoretical value. 

 This is due to the PCAP construction that could only 
operate using DMA from the Zynq DDR and so it will use the 
cache if it is not explicity disabled or invalidated. 

 Achieving faster reconfiguration could be obtained using 
custom controllers, as Vipin [14] presented using the Zynq 
device. 

D. Future Work 

Automatic test showed a catastrophic flaw in the AXI bus, 
where a hang up was detected and it was only recovered after a 
reset and a full reconfiguration and this should be addressed in 
a new study, improving the AXI bus to avoid this situation and 

implementing the automatic detection of an eventual lock to 
reset the processor and reconfigure the FPGA. 

The SEM IP has a feature that classifies the bit and then 
provide an interface to inform that an error occurred in this 
essential bit or not. This feature should be implemented to 
improve the reliability of the design, allowing the design to be 
aware that the controller detected an error in a critical bit and 
then inform the processor so that every computation executed 
during this upset should be reevaluated to avoid any potential 
error. 

If using partial reconfiguration for error correction in the 
frames, the classification status will improve the timing 
schedule, just reconfiguring when a critical bit is flipped and 
classified as essential/critical. 

As seen during practical tests and Bruijstens [9], the use of 
the enhanced repair mode of the SEM Controller together with 
the use of DPR is not optimal, as the time taken by the 
controller to fully initialize, using the XC7Z020 device, is 2.9s 
[5]. A new study using the repair mode is a good improvement 
to the final solution. 

At this moment, only SoC’s temperature and voltage are 
monitored using the FPGA internal sensors, but a beneficial 
addition is an external sensor to measure the current 
consumption, providing a mean for accurate latch-up detection 
and power consumption calculation. 

Use of the second core of the processor, adding the support 
for Linux and ethernet, facilitating external communication and 
control. 

CONCLUSION 

The increase in high performance computation usage in 
embedded system makes the FPGA an alternative that 
consumes relative low power and can be easily updated and 
reprogrammed.  

Radiation hardened devices are normally expensive and 
imposes some restrictions in the end user and acquisitions, so 
the use of COTS SRAM based FPGA is interesting in non-
critical devices, using the error mitigation characteristics 
presented throughout this study.  

It was showed that dynamic partial reconfiguration can be 
used together with soft error mitigation using memory 
scrubbing by following some simple steps before and after 
each event. 

An automatic error injection platform was presented, with 
the support of bit flip injection, automatically checking the 
DUT performance with the production of a test reports and 
results statistics, showing that time could be saved with the 
focused injection in specific areas. 

The automatic error injection is a cost optimized solution 
for extensive testing, checking that the mitigations are effective 
before a certification could be applied to the final product. 

If one fails to implement an effective error mitigation and 
correction, the design could suffer from a critical failure 
causing unexpected behavior and a risk to its use. 

Fig. 4. Excerpt from Test Report output. 

 

Fig. 5. . HW and SW multiplier result are equals 

 

Fig. 6. Wrong HW result, due to a single event upset (bit flip) 
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