
2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

A Base FPGA Platform for Safer Designs exposed

to harsh radioactive environments

Ricardo Zanone

Computer and Electronic Engineering Department

Technological Institute of Aeronautics

São José dos Campos, Brazil

Osamu Saotome

Computer and Electronic Engineering Department

Technological Institute of Aeronautics

São José dos Campos, Brazil

Abstract— FPGAs offers a very affordable platform for high-

performance computation, while allowing lots of flexibility to

perform easy in-field reconfiguration. The easy reconfiguration is

achieved by using a memory that holds all the configuration bits

allowing for the FPGA internal elements be interconnected to

perform custom functions and in most cases this memory is of the

SRAM type. A bit flip in this memory could potentially cause a

misconnection or changes in the implemented circuit and the

final computation could be impacted. This makes the Errors

detection and correction in the configuration RAM (CRAM) an

important feature of systems exposed to harsh environments.

This paper presents a base platform that uses Xilinx’s IPs and

features of the 7 Series Zynq device to inject, detect, and correct

errors while the system allows the dynamic partial

reconfiguration (DPR) for run time changes in response to

application requirements. The study presented in this paper uses

the premise of using a COTS device, without being radiation-

hardened, lowering the cost of the implementation, and allowing

the deployment of non-safe-critical devices that still can perform

under the threats imposed by the surrounding environment. The

results found in this paper shows that the memory cache

improves the overall performance of the DPR and hardware

acceleration more than 300 times in some situations. Automatic

Error Injection showed that less than 0.05% of the bit flips

caused errors in the logic operation results.

Keywords— SoC, FPGA, COTS, soft error mitigation (SEM),

dynamic partial reconfiguration (DPR)

I. INTRODUCTION

The increasing necessity for higher computation
performance and flexibility, allowing upgrade and repurposing
of the in-field deployed devices, presents a good usage for
Systems-on-Chips (SoCs). These devices packs, in the same
component, an FPGA, one or more processors, different types
of communication buses and many other devices for
Input/Output of data.

The most common way of reconfiguring an FPGA is using
a flash memory to store a bitstream, generated by the vendor’s
tool, that contains all the configuration bits that will implement
the final logic circuit. During boot, the FPGA SRAM memory
is programmed with this bitstream and then the FPGA fabric
will start to act as intended by the user’s logic implemented.
This brings an easy way to reprogram the device but makes the
component more susceptible to bit flips (single event upsets).

Xilinx claims [4] that their devices are only susceptible to
single event effects caused by ionization radiation.

When the radiation hits an SRAM cell it can flip the value
of a bit, if the flipped bit is used (essential) in any way by the
design, it could alter the functionality of the circuit configured
by that cell.

Another possible upset is the latch-up, which can short
circuit power rails, and then the device should be power cycled
to avoid being damaged or even destroyed.

Although the radiation levels are worse in space, even at
earth’s surface or at higher altitudes (aviation) the devices are
susceptible to bit flips caused by radiation, so this kind of error
mitigation has more application than only in space programs.

For soft error mitigation, memory scrubbing is one such
technic, and extensively studied [8,9]. This paper uses an
option provided for free within the Xilinx’s tool suite, the SEM
IP (Soft Error Mitigation Controller Intellectual Property)
Controller [5].

Aside from memory scrubbing, there are other options for
error correction, like full or partial reconfiguration [7]. The
main downside of total reconfiguration is the time the system
will be unavailable due to the reconfiguration, so partial
reconfiguration reduces dramatically the downtime because
only a small portion of the device/design will change.

Partial reconfiguration has other roles, one of them is to
give a new function to the same area of the FPGA, for
example, changing a filter type or the arithmetic operation
being executed. Another important role of DPR in embedded
systems is to upgrade the device while other vital function is
still being executed. One example is the reconfiguration of a
device that is connected to a computer through a PCIe
interface. In a entire FPGA reconfiguration, the PCIe channel
will stop communicating with the computer and the computer
will need to be rebooted in order to recognize (enumeration
process) the PCIe device again, with DPR it is possible to
reprogram just the area that is used for some other logic and the
PCIe interface continues its normal operation, in this case the
PCIe interface can be used to receive this new bitstream an
reconfigure the device’s memory [6].

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

A. Motivation

Embedded systems are commonly deployed in harsh
environment with minimal or no intervention and normally
stays with an online operation for a long period between resets,
in this case, the effects of the radiation are most critical,
because the chances of an upset in an essential bit are higher
and the impact in the operation more probable.

Systems that should operate long times between power
cycles should have mechanisms for soft error mitigation.

Dynamic partial reconfiguration could be used for error
correction and to upgrade functions while others continue its
operation without being disturbed.

Most studies present each subject used separated from each
other and the ones that implement both, normally implements
in a fabric-only device and most of the time in older
technologies, without using the ARM processor.

B. Related Work

 Bruijstens [9] is the only reported work that presents SEM
together with DPR in a Zynq 7000 device. Keshk and Asami
[10] presents both subjects together but using a fabric-only
device.

II. BASE PLATFORM´S ARCHITECTURE

A. High Level Overview

The core of the architecture is the Xilinx’s Zynq 7000,
which is an SoC that has a dual-core ARM A9 and an FPGA
fabric in the same die.

The proposed architecture, Figure 1, should be used as a
base design for implementing DPR for hardware coprocessing
and acceleration while being constantly monitored for soft
errors and device’s health, such as temperature and voltage.

Those characteristics makes the platform suitable to be
deployed in harsh environments, mainly in non-critical
instruments or communications [8].

B. Soft Error Mitigation

To protect SRAM-based FPGA, Xilinx’s SEM IP is being
used in this platform. The controller can be accessed from a
serial console and provides the status of the configuration
memory, injection of errors and operational status.

It is possible to communicate with the controller using the
AXI Bus of the processor, but for this study an external UART
was attached to the design, providing an easy way to use an
external PC with a script to inject error and check how the
platform behaves.

C. Dynamic Partial Reconfiguration

Dynamic partial reconfiguration is performed through the
ARM´s PCAP port.

The full or partial bitstream is loaded to the processor
DDR, then using DMA, the file is transferred to the
configuration memory of the PL using the PCAP port.

D. Device´s health monitoring

Using the XADC present in the Xilinx’s 7 series, the
temperature and voltages of the device are monitored and can
be presented to the operator by a drop-down menu presented on
the serial console.

The temperature and voltages being monitored with the
XADC are internal values from the SoC.

 Since the XADC doesn’t measure current consumption, the
addition of external sensors should be added to ensure that
latch-ups could be detected to improve the reliability of the
platform.

Fig. 1. Block Diagram Representation of the proposed platform

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

III. DPR AND SEM IN THE SAME PROJECT

A. Configuration Ports

In Zynq [3], the processor sub-system has control, at power
up, of all configurations to the PL using the PCAP port. The
system is designed this way mainly because of two factors. The
first one is improving the overall security of the design,
allowing the ARM processor TrustZone to control the
configuration port, only allowing trusted devices access the
FPGA ICAP port to configure the device memory, and the
second is allowing the FPGA´s configuration at boot time
using the ARM’s first stage bootloader (FSBL).

The selection of the interface in control of the FPGA
configuration is made by a 2:1 mux, controlled by the
PCAP_PR register, as in figure 2.

After initial configuration (or at any time), the processor
may set the control bit to switch the configuration interface to
be accessed internal to the FPGA fabric, then ICAP becomes
active.

As in figure 2, the SEM controller uses the ICAP port to
perform the CRAM’s scrubbing. So, after the initial
configuration, the processor should release the PCAP and pass
the control to ICAP, permitting the SEM controller monitor,
detect and correct errors caused by radiation.

If the processor needs a partial reconfiguration in some area
within the fabric, it will need the PCAP control back.

When using the SEM Controller, this action is not as simple
as changing the mux [11,12] configuration, the following
actions should take place:

1. Put the SEM IP in IDLE mode.

2. Send a SYNC command, stopping the SEM IP
frame´s error scanning.

3. Select the PCAP port and perform the dynamic
partial reconfiguration.

4. After the DPR operation is done, transfer the
control of ICAP back to SEM IP.

5. Perform a soft reset on SEM IP.

Put the SEM IP in OBSERVATION mode.

Figure 2 shows the interfaces that were developed to decouple
the SEM IP from the ICAP, switching the control to PCAP
perform the partial reconfiguration. The items in yellow
permits that steps 2 and 4 are correctly executed.

To stop SEM IP scanning, the controller should be
configured to the Idle mode and a SYNC word command,
should be sent through the mux to the ICAP. This is
accomplished using the output of the “ICAP Sync controller”
block that sends the value “0x5599AA66”.

When the DPR is finished, the PCAP can switch the control
back to SEM controller. This is accomplished commanding the
“icap_sel” value and configuring the mux to connect the SEM
IP with the ICAP.

After a partial reconfiguration is performed, before the
SEM IP return to the observation mode it is necessary to
perform a soft reset in the controller, recalculating the FRAME
ECC of the CRAM.

If one commands the SEM IP back to the observation mode
without the soft reset, the controller will detect the
reconfiguration as SEUs and will try to correct them.

If one do not change the SEM IP to the idle mode prior to a
DPR, it will continue in observation mode then during partial
reconfiguration the changes in the CRAM will be understood
as SEUs and the SEM IP will try to correct those bit flips,
potentially entering in a loop of error correction and
reconfiguration, resulting in a failed reprogramming of the
area.

It is important that all PCAP or ICAP operations are
completed before switching the control between them.

Figure 2 shows that JTAG has precedence over both ports,
so care should be taken when using the JTAG together with
PCAP and ICAP, avoiding interference between the ports.

IV. BASIC PARTIAL RECONFIGURATION FLOW

A. DPR project flow

Dynamic Partial Reconfiguration (DPR) flow is supported

by Vivado, but not yet fully integrated with the GUI-based

project flow [6].

The designs are implemented using the Vivado Tcl based

command flow or using a combination of Tcl commands and

the GUI.

To facilitate the reproduction of the results and provide a

base configuration for other studies using this architecture, a

set of scripts were developed to create a project with two PR

modules, implementing the following steps:

1) Create the project and block design.

a) The block design should contain the ARM
processing system instance.

b) The reconfigurable items should have only the
interface definitions declared in this step.

2) Synthetize the design, generating all the design
checkpoints (DCP) for the static region and blocks of
logic.

3) Load the DCP for static and one of the reconfigurable
partitions (RP).

4) Define RP properties.

5) Run Design Rule Checker (DRC).

6) Create and implement first configuration.

7) Create all other configurations.

8) Verify all configurations (PR_verify command).

9) Generate bitstreams.

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

V. HARDWARE ACCELERATION AND HIGH LEVEL

SYNTHESIS HLS

Hardware acceleration takes advantage of the
reconfigurable device and could be used to offload
computations from the processor to hardware’s blocks,
improving the execution time and freeing the processor to
perform other actions and get the results when available.

High Level Synthesis (HLS) flow is supported by Vivado
and could be fully addressed using the GUI or Tcl commands.

HLS provides the ability to design the algorithm using
C/C++ language and using the tool, translate that for an RTL
design in VHDL or Verilog.

This study takes advantage of HLS, implementing a 32x32
Matrix multiplication and the following steps should be
performed to create the RTL:

1. Creation of C code and C testbench, describing
and testing the accurateness of the design.

2. C functional Verification, using Vivado HLS
tool.

3. HLS, using the user constraints.
4. C/RTL CoSimulation.
5. Implementation Evaluation
6. RTL IP export

VI. AUTOMATIC ERROR INJECTION

Xilinx 7 series SRAM-based FPGA has three main types of
memory embedded within the device (1) configuration memory
(CRAM), (2) block memory (BRAM) and (3) distributed
memory (DM).

The design functionality is loaded in the CRAM, using the
bitstream file, which is arranged in frames, protected by error
correction code (ECC) and cyclic redundancy check (CRC).

Frames are the smallest addressable segment in the FPGA
CRAM, consisting of 101 configuration words of 32 bits each.

Design functionality will change its behavior if one or more
essential bits are flipped, characterized as critical bits.

The device’s bitstream size is fixed and represents all the
configurable hardware present in the device and accessible to
the user logic design and includes all the memory configuration
(CRAM, BRAM, DM) in its size.

SEM IP perform scrubbing only in CRAM and the essential
bits count will be smaller than the bitstream. For error
mitigation in the other memories, triple modular redundancy
(TMR) voting, ECC or CRC could be applied in the user logic
to correct error in BRAM and DM.

The device used in this study has 25697632 essential bits,
but the design will not use all those bits [4], so an automatic
test could (1) inject a bit flip in a random address or (2) inject
error in all address within a small block of the device. This
study uses the second technic.

During the implementation flow of the DPR design, it is
constrained the position of the PR in the device, using a
primitive of the Vivado toll called “pblock”. With the
coordinates of this block, Aranda and Maestro [13]
demonstrate how to calculate the essential bits address
contained in that region.

Using the above method, it was discovered 70182 essential
bits in the PR region, so an automatic test could focus on bit
flip injection inside that region, checking the design behavior
and result.

Fig. 2. Configuration ports and paths for the PL’s CRAM

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

Figure 3 presents the architecture used, where a Python
script sends the bit flip address to SEM IP and check the result
of the hardware multiplication against a similar one performed
in software, using the ARM A9 core. The script then writes a
test report, saving the address and the result of the comparison,
where “0” means both results matches or “1” when the
hardware result does not match with the software counterpart.

VII. RESULTS

A. Hardware Coprocessing

Multiplication is a commonly used arithmetic computation,
present in most embedded devices performing digital signal
processing.

It was implemented two hardware coprocessing versions
evaluating the acceleration factor against the same calculation
in a processor using multiplication in software.

The first implementation used the AXI Lite 4 and a single
multiplication operation in hardware. Table I presents the
execution time of 1024 multiplications, in SW and HW.

TABLE I. HW VS SW SINGLE MULTIPLICATION

 Time (us)

Hardware 2320

Software 346

It is clear, in this case, that using AXI Lite 4 to perform
multiplication is approximated 6.7 times slower than the code
executed in software. The main reasons for this are (1) the
ARM runs at 650MHz and the Hardware at 100MHz, almost
the same factor detected in the time execution and (2) the AXI
Lite 4 has a bigger overhead and is not designed for
transactions with a lot of data being moved inside the FPGA.

For comparison, using the HLS flow it was designed a
second version that performs a 32x32 matrix multiplication
algorithm, using the AXI Stream interface.

The AXI Stream is designed for moving high volume of
data with minimal overhead in its protocol. The design
implemented uses DMA to move data in and out of the
processor. Table II presents the execution time of an 32x32
matrix multiplications, in SW and HW.

TABLE II. HW VS SW 32X32 MATRIX MULTIPLICATION

 Time (us)

Hardware, cache enabled 53

Software, cache enabled 1567

Hardware, cache disabled 69

Software, cache disabled 24099

It is clear, in this case, that using AXI Stream improves the
computation and achieve the hardware acceleration pretended,
offloading the ARM processor. When using the DDR’s
memory cache, the improvement of the hardware coprocessing
is approximately 30 times and 350 times with disabled caches.

B. Automatic Error Injection

In VI, it was presented that the number of injections was

dramatically reduced, focusing in the area where the

multiplication hardware is implemented. Table III presents the

results from the performed injections.

TABLE III. INJECTION STATISTICS

Total of Frames with essential bits in the PR 70182

Total of Injections executed 21935

Erroneous multiplication result 7

Injection with AXI Bus locked 126

From table III, the frames that contain essential bits inside

of the PR region is only 3.66% of the total essential’s bits of

the device.

Table III shows that it was injected approximately 30% of

the addresses with essential bits, this happened because after

this, the injected errors started to hang up the processor when

the AXI bus was accessed. Because of this behavior, the script

was finished, as it is not conclusive when the AXI Bus hangs,

the result is not show, and it is considered a critical failure.

From those injection, only 7 addresses presented an

erroneous multiplication result, and this was caught comparing

the result of the HW multiplication against the same operation

coded in software.

Figure 4 shows an excerpt of the automatic test report

generation, presenting the address of the bit flip and the result

of the device under test (DUT), in this case the multiplier,

were a “0” means that HW and SW results are equal, Figure 5,

and a “1” indicates that the HW result is different from the

SW, Figure 6.

C. Dynamic Partial Reconfiguration

TABLE IV. PARTIAL RECONFIGURATION TIME

Time (us)

Throughput

(Mb/s)
Cache

First DPR 897 143 Enabled

All others PR 1.35 95195 Enabled

First DPR 1186 108 Enabled and invalidated

All others PR 576 222 Enabled and invalidated

First DPR 984 130 Disabled

All others PR 6 21117 Disabled

Fig. 3. Automatic error injection architecture

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

 Sultana [7] mentions that PCAP theoretical throughput is
400Mb/s, using the 32 bits platform, achieving an average of
140Mb/s, that is not far from the results obtained in this study.

 Table IV shows that when the first PR is performed, the
throughput is closer to the theoretical and from the second and
beyond, within some configurations, the speed is unreal. This
was narrowed down as a side effect of the small bitstream
used in the PR and the Zynq´s DDR cache. The cache, when
enabled, presents almost 96Gb/s of write speed, but when the
cache is enabled and commanded to invalidate its contents
before each PR, the speed goes closer to the average and lower
than the theoretical value.

 This is due to the PCAP construction that could only
operate using DMA from the Zynq DDR and so it will use the
cache if it is not explicity disabled or invalidated.

 Achieving faster reconfiguration could be obtained using
custom controllers, as Vipin [14] presented using the Zynq
device.

D. Future Work

Automatic test showed a catastrophic flaw in the AXI bus,
where a hang up was detected and it was only recovered after a
reset and a full reconfiguration and this should be addressed in
a new study, improving the AXI bus to avoid this situation and

implementing the automatic detection of an eventual lock to
reset the processor and reconfigure the FPGA.

The SEM IP has a feature that classifies the bit and then
provide an interface to inform that an error occurred in this
essential bit or not. This feature should be implemented to
improve the reliability of the design, allowing the design to be
aware that the controller detected an error in a critical bit and
then inform the processor so that every computation executed
during this upset should be reevaluated to avoid any potential
error.

If using partial reconfiguration for error correction in the
frames, the classification status will improve the timing
schedule, just reconfiguring when a critical bit is flipped and
classified as essential/critical.

As seen during practical tests and Bruijstens [9], the use of
the enhanced repair mode of the SEM Controller together with
the use of DPR is not optimal, as the time taken by the
controller to fully initialize, using the XC7Z020 device, is 2.9s
[5]. A new study using the repair mode is a good improvement
to the final solution.

At this moment, only SoC’s temperature and voltage are
monitored using the FPGA internal sensors, but a beneficial
addition is an external sensor to measure the current
consumption, providing a mean for accurate latch-up detection
and power consumption calculation.

Use of the second core of the processor, adding the support
for Linux and ethernet, facilitating external communication and
control.

CONCLUSION

The increase in high performance computation usage in
embedded system makes the FPGA an alternative that
consumes relative low power and can be easily updated and
reprogrammed.

Radiation hardened devices are normally expensive and
imposes some restrictions in the end user and acquisitions, so
the use of COTS SRAM based FPGA is interesting in non-
critical devices, using the error mitigation characteristics
presented throughout this study.

It was showed that dynamic partial reconfiguration can be
used together with soft error mitigation using memory
scrubbing by following some simple steps before and after
each event.

An automatic error injection platform was presented, with
the support of bit flip injection, automatically checking the
DUT performance with the production of a test reports and
results statistics, showing that time could be saved with the
focused injection in specific areas.

The automatic error injection is a cost optimized solution
for extensive testing, checking that the mitigations are effective
before a certification could be applied to the final product.

If one fails to implement an effective error mitigation and
correction, the design could suffer from a critical failure
causing unexpected behavior and a risk to its use.

Fig. 4. Excerpt from Test Report output.

Fig. 5. . HW and SW multiplier result are equals

Fig. 6. Wrong HW result, due to a single event upset (bit flip)

2023 Brazilian Technology Symposium

ISSN 2447-8326. V.1 © 2023 BTSYM

REFERENCES

[1] A. Guerrieri, S. Kashani-Akhavan, P. Lombardi, B. Belhadj and P.

Ienne, "A Dynamically Reconfigurable Platform for High-Performance
and Low-Power On-Board Processing," 2018 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2018, pp. 74-81, doi:
10.1109/AHS.2018.8541452.

[2] A. Guerrieri, S. Kashani-Akhavan, M. Asiatici and P. Ienne, "Snap-On
User-Space Manager for Dynamically Reconfigurable System-on-
Chips," in IEEE Access, vol. 7, pp. 103938-103947, 2019, doi:
10.1109/ACCESS.2019.2931475.I. S. Jacobs and C. P. Bean, “Fine
particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G.
T. Rado and H. Suhl, Eds. New York: Academic, 1963, pp. 271–350.

[3] Xilinx, “Zynq-7000 SoC Data Sheet: Overview (DS190),” 2018.

[4] Xilinx, “A Practical Look at SEU, Effects and Mitigation”, 2016.

[5] Xilinx, “LogiCORE IP Soft Error Mitigation Controller v4.1”, 2018.

[6] Vipin, Kizheppatt. “FPGA Dynamic and Partial Reconfiguration : A
Survey of Architectures , Methods , and Applications.” 2018.

[7] B. Sultana, A. Ullah, A. A. Malik, A. Zahir, P. Reviriego, F. B. Muslim,
N. Ullah, and W. Ahmad, “VR-ZYCAP: A Versatile Resourse-Level

ICAP Controller for ZYNQ SOC,” Electronics, vol. 10, no. 8, p. 899,
Apr. 2021.

[8] F. Brosser, E. Milh, V. Geijer and P. Larsson-Edefors, "Assessing
scrubbing techniques for Xilinx SRAM-based FPGAs in space
applications," 2014 International Conference on Field-Programmable
Technology (FPT), 2014, pp. 296-299, doi: 10.1109/FPT.2014.7082803.

[9] Bruijstens, D.P., "Reliability of SRAM-based FPGAs", 2018

[10] Keshk, Mohamed El-Hady & Asami, Kenichi, “Fault Injection In
Dynamic Partial Reconfiguration Design Based On Essential Bits”, 2018

[11] Xilinx, “Zynq 7000 - Switching between ICAP and PCAP
Recommendations”, 2016.

[12] John Ayer Jr, “Dual Use of ICAP with SEM Controller”, XAPP517 Ver.
1.0, Dec., 2011.

[13] L. A. Aranda, A. Sánchez-Macián and J. A. Maestro, "ACME: A Tool to
Improve Configuration Memory Fault Injection in SRAM-Based
FPGAs," in IEEE Access, vol. 7, pp. 128153-128161, 2019, doi:
10.1109/ACCESS.2019.2939858.

[14] K. Vipin and S. A. Fahmy, "ZyCAP: Efficient Partial Reconfiguration
Management on the Xilinx Zynq," in IEEE Embedded Systems Letters,
vol. 6, no. 3, pp. 41-44, Sept. 2014, doi: 10.1109/LES.2014.2314390.

