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Abstract. This work focuses on the challenging task of designing robust controllers for linear
systems with time-varying parameters. It explores metaheuristic methods, specifically Particle
Swarm Optimization and Genetic Algorithm, to search for controllers that optimize temporal
performance and consider bounded inputs and outputs. The study demonstrates the feasibility
of the approach by conducting tests on an Autonomous Vehicle Platoon system, showcasing
the achieved control gains and temporal behavior, and comparing it with a technique based
on LMIs.
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1 Introduction

Designing robust controllers for Linear Parameter-Varying (LPV) systems is a challenging task.
The state-of-the-art control theory design methods for LPV systems are based on the use of the
Lyapunov theory, which allows the conditions to be formulated in terms of Linear Matrix Inequalities
(LMIs). The existing conditions for the synthesis of filters and controllers for LPV systems are only
sufficient. There are methods employing Polya’s relaxation and variable substitution to formulate
positive definite optimization problems reducing the conservatism of the solutions [1–3].

However, LMI-based controller synthesis is non-trivial, both in terms of formulation and solu-
tion methods, which is why the solution is obtained offline using conventional or high-performance
desktop computers, depending on the complexity and order of the system [4, 5]. Robust synthesis
methods for robust controllers in LPV systems using Lyapunov theory generate guaranteed stable
controllers [6]. However, there is a wide range of dynamic LPV systems based on real engineering
systems where the variation and dynamics of the system are slow and predictable [7]. In systems
with low uncertainty and no stochastic component, where the open-loop behavior is already sta-
ble, temporal performance becomes our primary criterion, as stability is easier to achieve. Another
point of interest is the ability to manipulate and recalculate controllers locally, which is why these
algorithms should be capable of implementation on Digital Signal Processors (DSP) or industrial
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computers with reduced computing power compared to modern desktop computers, but suitable for
deployment in hostile environments.

Concerning the applications, autonomous vehicles have become very relevant in the last decades.
There are even commercial services, such as Waymo by Google or RoboRide by Hyundai, both
with an autonomy level of 4. In addition, some lower-level automation vehicles have assisted driving
systems, such as Adaptive Cruise Control (ACC) [8–10] and Lane Keeping Assistance (LKA) [11,12],
for instance. Once their use becomes widespread, it will be time to start the next step in self-
driving, which is synchronizing several vehicles to operate as a whole system. In the literature,
this is a concept that has been studied under different names, such as the Autonomous Vehicle
Convoy (AVC) system [13,14], o Vehicle Leader-Follower (VLF) [15–17], Unmanned Surface Vehicle
(USV) [18], among others. For this work, the Autonomous Vehicle Platoon (AVP) approach is
considered.

One of the requirements of this kind of system is the tracking of the trajectory between vehicles.
One may cite [19] where a Model Predictive Control (MPC) is implemented, mainly designed to
reject external disturbance, [20] where a consensus-based control is used, focused on avoiding com-
munication delays, and also [21] that design an adaptive strategy based on Distributed Integrated
Sliding Mode (DISM) to optimize vehicle spacing. These studies work with Linear Time-Invariant
(LTI) systems, except the work of [21], which offers an adaptive control to operate in an LPV envi-
ronment. However, the method does not consider the propagation of errors that could be generated
when operating with long rows of vehicles. The string stability in systems composed of several agents
is important because if a disturbance affects the tracking, this error can be incorporated for the rest
of the platoon, even reaching instability. A minimized H∞ performance can avoid this phenomenon
if the upper bound cost is less than 1 [22, 23]. In [24] the authors propose a synthesized method
based on H∞ performance. Still, this work only considers the longitudinal dynamics of the platoon
under the assumption that all vehicles had the information from the leader. This aspect can gen-
erate communication problems if the lateral dynamics and numerous vehicles in the platoon are
considered.

This work is interested in the synthesis of controllers for LPV systems using metaheuristics.
The main goals are: i) achieving the best temporal performance for a simple stabilizing system,
and ii) considering a bounded set of inputs and outputs, as it corresponds to a real-world plant
process. To achieve these goals, we utilize the Particle Swarm Optimization (PSO) [25, 26] and the
Genetic Algorithm (GA) [27,28] methods for designing robust controllers for a discretized version of
continuous-time LPV systems. For comparison, the H∞ discrete-time LMI-based synthesize method
proposed in [29] is tested.

The Global Optimization Toolbox [30] in Matlab is used to solve the optimization problem, and
constraints are imposed based quadratic stability of the discrete closed-loop system. We assume
the system to be a simple stabilizing one, focusing solely on stability concepts for LTI systems, to
present the feasibility of the proposed approach. To demonstrate the viability of our proposal, tests
are conducted on an Autonomous Vehicle Platoon system, showcasing the temporal behavior and
the achieved control gains.
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2 Mathematical framework

Consider a discrete-time parameter-dependent system in state-space, such as

G =

{
x(k + 1) = A(θ(k))x(k) + J(θ(k))w(k) +B(θ(k))u(k),
z(k) = C(θ(k))x(k) + E(θ(k))w(k).

(1)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, and w(k) ∈ Rq is the external
disturbance vector. The matrices A(θ(k)) ∈ Rn×n, B(θ(k)) ∈ Rm×n, J(θ(k)) ∈ Rn×q, C(θ(k)) ∈
Rp×n, and E(θ(k)) ∈ Rp×q are structured in the form

X(θ(k)) = X0 +

M∑
i=1

Xi

( V∏
j=1

θj(k)
λi
j

)
, (2)

where Xj , j = 0, . . . , V , are known matrices, M is the number of combinations of the time-varying
parameters in the system, V is the number of time-varying parameters in the system, λ is the
parameter degree in the i-th combination, and θ(k) is a vector of bounded time-varying parameters
belonging to the set {

(θ1, . . . , θV )(k) ∈ RV : θj ≤ θj(k) ≤ θj , j = 1, . . . , V
}
, (3)

for all k ≥ 0. Furthermore, the bounds θj and θj are known values.

2.1 Closed-loop system

If one applies a state-feedback control law u(k) = Kx(k) to (1), the closed-loop system obtained is

GK =

{
x(k + 1) = Acl(θ(k))x(k) + J(θ(k))w(k),
z(k) = C(θ(k))x(k) + E(θ(k))w(k),

(4)

where, Acl(θ(k)) = A(θ(k)) +B(θ(k))K and K ∈ Rm×n = [K1,K2, · · · ,Kn] is the gains matrix.

2.2 Stability in LPV systems based on Lyapunov theory

For discrete-time LPV systems, a sufficient condition to certify stability is expressed as follows:

Acl(θ(k))
′PAcl(θ(k))− P ⪯ 0, (5)

where P ∈ Rn×n is a parameter independent symmetric definite positive matrix. The constraint (5)
is known as quadratic stability for discrete systems with time-varying parameters. These constraints
into an infinite-dimensional problem that can be reduced to a finite set of tests involving parameter-
dependent LMIs.
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3 Performance based on guaranteed cost H∞

A performance index widely employed in the control literature is the H∞ guaranteed cost. This cost
is, in short, the upper bound cost guaranteed by the relationship between the output z(k) concerning
the exogenous input w(k), such that

||z(k)||22
||w(k)||22

< ρ, (6)

where ρ is the upper bound. If one minimizes this bound, at the same time, one minimizes the effect
of the exogenous input w(k) on the output z(k). This parameter can also be computed by

ρ = max

(
C(θ(k))

(
ejωTsI −Acl(θ(k))

)−1
J(θ(k)) + E(θ(k))

)
(7)

where Ts is the sampling time of digital implementation, and the frequency must be evaluated in
ω = [0, 2π/Ts].

It is important to indicate that a lower H∞ guaranteed cost, in general, implies better perfor-
mance. In other words, two controllers can be compared for the guaranteed cost offered by each,
where the lowest cost indicates the best controller.

4 Formulation of the Optimization Problem

A useful way to obtain a controlled system that offers a lower H∞ guaranteed cost is to use an
optimization method to synthesize the controller. For this, one must define the parameters, decision
variables, cost function, and constraints of the problem. As for the objective function, it must be
taken into account that the objective of the synthesis method is to obtain the lowest possible cost,
therefore, the objective is to minimize ρ in (7).

Concerning the decision variables, from (4) it is clear that the only variables are the matrix of
control gains, as a result, the optimization problem has a matrix of decision variables with elements
n×m, each belonging to R.

In terms of constraints, it is important that the closed-loop system can always be stable. This is
reached only if (5) is satisfied, therefore, (5) is the most important constraint. Moreover, all possible
values of the elements from the decision variables vector must be restricted to bound the candidate
region solution, therefore, we propose a magnitude constraint, such that

kmin ≤ ki,j ≤ kmax, ∀ki,j ∈ K. (8)

In this way, now the space of solutions is bounded and can be denoted by K ∈ Rn×m, being a convex
space.

About the parameters, the matrices of the system (1) are fixed and known; for this reason, these
matrices represent the parameters of the optimization problem.
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In summary, let A(θ(k)), B(θ(k)), J(θ(k)), C(θ(k)) and E(θ(k)) the problem can be expressed
by5

min
K∈K argmax

(
C(θ)

(
ejωTsI −Acl(θ,K)

)−1
J(θ) + E(θ)

)
s.t. Acl(θ,K) satisfying (5),

kmin ≤ ki,j ≤ kmax.

(9)

In summary, the solver fits the decision variables until finds a minimum in the objective function
that satisfies all constraints. These decision variables vector is returned by the solver as the control
gains vector.

Note that (9) presents one non-linear objective function, one non-linear inequality constraint,
and two bound constraints. Some optimization solvers are not compatible with inequality/equality
constraints; therefore, it is necessary to create an alternative formulation.

4.1 Alternative formulation for non-constrained solvers

To give an alternative formulation of an inequality/equality constraint problem, a penalty term
is considered in the objective functions. Since the inequality constraint is given to guarantee the
stability of the system. When the closed-loop is not able to satisfy (5) the cost function must be
increased. The new formulation proposed is given by

min
K∈K argmax

(
C(θ)

(
ejωTsI −Acl(θ,K)

)−1
J(θ) + E(θ)

)
+σ
(
Acl(θ,K)

)
s.t. kmin ≤ ki,j ≤ kmax,

(10)

with the σ(·) function given by

σ (Acl(θ,K)) =

{
if (5) is satistied then is 0,
if (5) is not satistied then is 100.

Thus, when the candidate controller leads to an unstable system, the candidate is severely penalized.

4.2 Optimization methods

In this work, we compare the performance of two metaheuristics: PSO and GA. Both solvers were
obtained from the Global Optimization Toolbox in Matlab. It is important to note that the GA
method allows handling with equality/inequality constraints, while PSO does not. These solvers were
selected because the problem’s objective function is non-linear and non-differentiable, similar to the
constraints. In addition, when the decision variables increase, there is a combinatorial explosion of
solution candidates. From this point of view, some solvers such as those based on gradient or linear
methods are not recommended. The comparison criterion between both algorithms is the maximum
number of Evaluations of the Objective Function (EOF) during the optimization process.

5 In (9)-(10) the time-dependency was omitted to simplify the notation.
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Parameters for solvers: To maintain the same number of EOF, the multiplication of the number
of elements with the number of iterations must be constant between both solvers, which is definite
as N = 2000. Furthermore, the maximum execution time was 20 s, the tolerance of 1 × 10−6, the
maximum stall iteration of 500, and all data are double type. The parameters used for each solver
are described below: For GA, the population size and the maximum generation is proved by a
hyperparameter tuning, the genetic variation is generated by @mutationuniform function with a
ratio of 0.2; the crossover is generated by the @crossover intermediate function with ratio 0.8;
and the elite count is 5% of population size, when the population size is greater than 20, otherwise,
the elite count is 1. For PSO, inertia belongs to the interval from 0.1 to 1.1; the cognitive adjustment
weight is 1, the social adjustment weight is 2; and the neighborhood for social adjustment is 0.25.
In terms of the setup to solve the comparison method [29], the parsers Rolmip [31] and Yalmip [4];
and the solver Mosek [5] was used.

Note that Eqs. (9) and (10) refers to the general case given by (1). It is applied to an AVP
cyber-physic system to validate these methods. This system is described in the next section.

5 Autonomous Vehicle Platoon Modeling

An AVP system is composed of a platoon of terrestrial vehicles that form a line, one behind the
other. The first car on the line is called the leader, and the rest are followers, as shown in Fig. 1.

... 2nd Vehicle 1st Vehiclen-th Vehicle

NetworkNetworkNetwork

Leader1st follower
n-1 -th

follower

...

Fig. 1: Diagram of vehicle platoon with communication leader-follower.

The goal behavior is that all the elements on the line have the same trajectories along the time,
for which each vehicle is proved with the states of the immediately preceding vehicle and its own
states to generate a control signal, as in Fig. 2. A simplification of this case is considering each
pair (n−1)-th and n-th as a leader-follower subsystem, thus forming an Autonomous Car-Following
(ACF) problem. However, note that this behavior causes a phenomenon of error propagation, which
occurs because each ACF subsystem contains the accumulated errors of previous subsystems. This
phenomenon is not a problem if each subsystem has a cost H∞ lower than 1.

5.1 Modelling

This system was modeled in [32], considering an LPV approach and assuming homogeneous vehicles
as both the leader and the follower. The authors propose a state-spaces model from a force and
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Network

LeaderFollower

Controller

K

u(k)
x(k)

Fig. 2: Look-ahead communication topology is used for the control system of each ACF subsystem.

momentum balance applied to a single-track model given by

[
v̇y(t)
ṙ(t)

]
=

 −
(
cr+cf

)
mvx

(
crlr−cf lf

)
mvx

− vx(
lrcr−lf cf

)
Jvx

(
l2rcr+l2f cf

)
Jvx

[vy(t)
r(t)

]
+

[ cf
m

lf cf
J

] [
δ(t)

]
, (11)

where m is the mass of the vehicle, J is the yaw axis inertia, lr and lf are the distance between the
center-of-gravity and the extremes of the axles, Cr and Cf are the cornering stiffness of the axles
coefficients, Fy and Fx are the forces in the y-axis and x-axis, vy and vx are the velocities in their
respective axes. The steering angle of the front axle is δ(t), r(t) is a variation of the yaw angle, and
α is the slip angle on both axles. Note that this model considers the lateral dynamic, addressing
the problem with a Lane Keeping (LK) ACF system. From Fig. 1, this LK-ACF system with two
homogeneous automated vehicles is proposed by

x(k + 1) =

[
Al(θ(k)) 0

0 Al(θ(k))

]
x(k) +

[
0

Bl(θ(k))

]
u(k)

+

[
Bl(θ(k)) 0

0 edBl(θ(k))

]
w(k),

z(k) =

 1 0 −1 0
0 1 0 −1
0 0 0 0

x(t) +

 0
0
eu

u(k).

(12)

where, Al(θ(k)) and Bl(θ(k)) are the polytopic matrices obtained from discretize the system in (11),
considering that are parameters time-dependent in vx(k), such that θ1(k) = 1/vx(k) and θ2(k) =
vx(k). In this sense, x(k) corresponds to the augmented state vector such that x(k) = [vy1(k) r1(k)
vy2(k) r2(k)], u(k) = δ2(k) represents the control input, and w(k) = [δ1(k) p(k)] is an exogenous
input, where δ1(k) is the arbitrary input of the first vehicle provided by a real driver, and p(k) is a
disturbance in the input angle of the second vehicle. The output z(k) is the variation between both
state vector cars (leader and follower), the scalar ed is an influencing factor of disturbance on the
second input, and the scalar eu is an error adjustment constant; more information in [33]. Taking
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the parameter values for (11) from [34], the numeric matrices Al(θ(k)) and Bl(θ(k)) result in

Al(θ(k)) = θ1θ2

[
0.9818 −0.035

0 0.9804

]
+ θ1θ2

[
0.9818 −0.015

0 0.9804

]
+ θ1θ2

[
0.9922 −0.035

0 0.9916

]
+ θ1θ2

[
0.9922 −0.015

0 0.9916

]
,

Bl(θ(k)) = θ1θ2

[
0.1364
0.1261

]
+ θ1θ2

[
0.1364
0.1261

]
+ θ1θ2

[
0.1364
0.1261

]
+ θ1θ2

[
0.1364
0.1261

]
.

6 Results and comparison

The synthesizing process is based on hyperparameters tuning, which consists in executing seven
times both solver, where the values of elements and maximum number of iterations per solver vary,
for instance, in the first execution a population/swarm size of 1000 and a maximum number of
iterations of 10 was set, and for the last execution an element’s size of 10 and maximum iteration
of 1000 was used. Note that the maximum number of EOF corresponds to the multiplication of the
number of elements and the maximum iteration admissible, which implies that these parameters
are linearly dependent on each other by the expression EOF = ES × MNI where EOF is the
evaluations of the objective function, ES is the element size (population or swarm) and MNI is
the maximum number of iterations. The result of this hyperparameter tuning is reported in Fig. 3,
where this figure shows the optimized value (from both solvers) with respect to the population size
and the maximum amount of iteration. Recall that the multiplication of these two parameters can be
equal to 10000, therefore, while one value increases, the other decreases to hold the EOF constants.

Since Fig. 3, the minimum optimized value was chosen from all the simulations, and the solution
vectors associated with these values are used to generate the control gain vectors. The controllers
obtained based on these solutions are summarized in Table 1, where the optimized vector values of
the solvers are the respective vectors of control gains. Moreover, this table shows the execution time
and the best function value obtained by each solver.

Table 1: Obtained Controllers
Solver Obtained controller K′ Best Function Value Time

GA [ − 4.42 12.74 4.42 − 12.74] 0.1563 34.12 s

PSO [−35.17 46.65 35.09 −46.73] 0.1651 16.79 s

LMI3 [−2.27 10.34 2.27 −10.34] 1.4510 0.44 s
3Synthesize by the method in [29]

To compare the solutions obtained by the solvers, the fitness value column of Table 1 directly
indicates the minimized value, where a minimum value is better. In this sense, the GA obtains
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Fig. 3: Results for tuning of population size versus allowed maximum iterations. Note that each
simulation holds constant the number of objective function evaluations.

the minimum H∞ cost; however, it requires 34.12 s running. On the other hand, the solution from
the LMI-based solver was obtained in 0.44 s, being the fastest solver, although its guaranteed cost
H∞ value is higher than the fitness value obtained by the GA solver. But the proposal of this
work is to prove an off-line controller synthesizes method, therefore, besides the H∞ index, the
temporal performance of the controller is important and must be tested. For this, the usefulness
of the synthesized controllers is identified based on the performance index J given by (13), which
corresponds to the integrated square output.

J =
1

T

∫ T

0

z′(τ)z(τ)dτ (13)

This index penalizes the most deviating values from the origin. For testing, the disturbance signal
(14) is used. This vector is composed of two oscillatory decreasing signals 90 degrees out of phase
with each other, both of which have the same frequency and decay rates.

w(t) =

[
δ1(t)
p(t)

]
=

[
0.1e−0.02tcos(0.5t)
0.1e−0.02tsin(0.5t)

]
. (14)

This disturbance generates some behavior in the vy1(k) and r1(k) states, which must follow the
vy2(k) and r2(k) states. Note that the z(k) output corresponds to vy1(k)− vy2(k) and r1(k)− r2(k),
that is, hold z(k) → 0 is the performance goal. This behavior is shown in the Fig. 4, which is
obtained based on a 200 s simulation. As validation, the ρK is measured by the cost

ρK = max z(k)′z(k)/w(k)′w(k), (15)



10 Roberto M. Fuentes et al.

0 50 100 150 200

−4

−2

0

2

4

L
at

er
al

ve
lo

ci
ty

(v
y
(k
))

GA
PSO
LMI

Leader

0 50 100 150 200

−1

0

1

Time (s)

Y
aw

an
gl

e
(r
(k
)) GA

PSO
LMI

Leader

Fig. 4: Temporal response of the controlled system. The upper figure shows the vy1(k) signal and
the vy2(k) signals obtained by each controller of each solver. The lower figure shows the r1(k) signal
and the r2(k) signals.

where for GA solver, a ρGA = 0.1386 was obtained; for PSO solver, a ρPSO = 0.0590 was obtained;
and for LMI-based method, a ρLMI = 0.2736 was obtained. This shows that this particular system
formulation is correct, due to the OF values from the solvers are major than the temporal value for
this case. By visual inspection, all controlled systems are stable and z(k) converge to zero. However,
the cost index J allows a numerically precise comparison to be made. The cost obtained by each
controller is 0.0020 for the GA solver, 0.0038 for the PSO solver, and 0.0031 for the LMI-based
method, where a lower cost index J implies better performance, therefore, GA solver obtained the
best cost index J even over the LMI-based method.

7 Conclusion

An alternative synthesizing process based on minimizing cost H∞ using metaheuristic methods was
tested in an AVP system, obtaining H∞ indices of 0.156-0.165 for the GA and PSO optimization
methods, respectively. For this, two optimization problem statements were proposed, one with a non-
linear inequality/equality constraint, without penalty term, and the other without constraint, but
with penalty term instead. Regarding the results, the GA method obtains a lower optimized value
of the objective function (an 5.33% lower with respect to the PSO method) and better temporal
performance (47% improvement), but the time required to synthesize was almost twice as long as for
the PSO method. When these solvers are compared with the LMI-based method, the time required
to find the solution is almost two magnitude orders higher, but as the aim is goal an offline controller,
the temporal performance is the best criterion.
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Note that the assumption of stability open-loop and the validation only in the vertices in the
studied LPV system limits the proposed synthesizing method, therefore, future works may include
a method of theoretical validation, the use of LMI as a constraint of stability, and the cost H∞
at the same time. Applying this validation allows us to guarantee theoretical performance, even if
metaheuristic methods alone cannot ensure it.
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