
2023 Brazilian Technology Symposium

Computer Vision Applied to Vehicle Flow Monitoring
for a Smart Campus

Maria Isabela Monteiro Servino
School of Technology

UNICAMP
Limeira, Brazil

m221700@dac.unicamp.br

Rodrigo Luiz Ximenes
School of Technology

UNICAMP
Limeira, Brazil

ximenes@unicamp.br

Luis Fernando Gomez Gonzalez
Institute of Computing

UNICAMP
Campinas, Brazil

gonzalez@unicamp.br

Talía Simões dos Santos Ximenes
School of Technology

UNICAMP
Limeira, Brazil
talia@unicamp.br

Abstract—In the face of the ever-growing number of registered
vehicles in Brazil, the country has encountered significant
challenges, such as traffic congestion and parking scarcity.
Similar challenges have been experienced by the Campus I of
Limeira, which faces an increasing demand for parking spaces.
In this context, a pioneering project is proposed for Limeira's
Campus I, using computer vision for vehicle monitoring. This
project enables real-time flow tracking and statistical data
collection. The interdisciplinary initiative aims to enhance
campus connectivity, space optimization, and mobility and set the
stage for future innovations.

Keywords—monitoring; vehicles; computer vision.

I. INTRODUCTION
With the continuous increase in the number of registered

vehicles in Brazil, the country has been facing significant
challenges, such as traffic congestion and parking shortages
[1], [2]. Similar challenges are being encountered by Limeira's
Campus I, where there is a growing demand for parking
spaces. In pursuing solutions to urban problems, universities
have embraced the concept of Smart Campuses, with Unicamp
Campinas serving as an example by implementing projects to
modernize the campus and enhancing the community
experience [3].

In this context, a pioneering project is proposed for
Limeira's Campus I, leveraging computer vision [4] for
vehicle monitoring. This approach enables the tracking of
vehicle flow and the collection of statistical data. This
multidisciplinary initiative aims to foster connectivity,
optimize space utilization, enhance campus mobility, and pave
the way for future innovations.

II. METHODOLOGY

Various architectures were tested to implement the
proposed solution. Initially, ESP-32 CAM boards were

employed as low-cost cameras connected via Wi-Fi,
transmitting images to a virtual machine on the Oracle Cloud
[5] and a HaarCascade model in OpenCV was utilized for
vehicle detection [6]. However, this approach proved slow due
to image upload times and faced data protection and personal
privacy regulations (LGPD) challenges. An alternative
proposal involving Raspberry Pi boards also fell short of
expectations, as it couldn't achieve acceptable frame rates for
detection [7] and incurred higher costs. As the definitive
approach, an Intelbras VIP S4020 V2 IP camera, presented in
Figure 1, was chosen in collaboration with the campus's
Regional Administration Department (SAR), along with a
desktop computer.

Fig. 1. Locally installed camera.

The camera was installed on a post overlooking the
campus's main entrance and connected using a locally
installed network cable for video transmission. Processing
occurs on a local computer, enabling vehicle detection at an
adequate frame rate exceeding 5 frames per second (fps). This
setup allows real-time updates of the vehicle count on campus.
The computer is placed at the main entrance gatehouse, where
staff responsible for monitoring and gate operation are located,

ISSN 2447-8326. V.1 © 2023 BTSYM



2023 Brazilian Technology Symposium

as depicted in Figure 4, situated between the vehicle entry and
exit points.

The communication between the computer and the camera
is achieved through the Real-Time Streaming Protocol (RTSP)
[8]. Image connection and processing are carried out using
Python 3 and the OpenCV library, including vehicle detection.
The library also performs image transformations, displaying
relevant detection information and metrics. Additionally, the
Numpy and PyQt5 libraries are utilized for mathematical
calculations and creating a graphical interface showcasing the
image manipulated by OpenCV.

The YOLOv4-tiny neural network model is employed for
vehicle detection due to its speed and high accuracy in
identifying various object classes such as cars, motorcycles,
and bicycles [9], [10]. Figure 2 illustrates the architecture
diagram for image processing.

Fig. 2. Architecture diagram.

The implemented code follows a flow that begins by
creating a window with two widgets using the PyQt5 library:
an image displaying the latest processed frame and a timer
initiating the processing of a new frame according to the
camera's framerate. As specified by the model, processing
areas of 416 x 416 pixels are established. Within these areas,
regions to be ignored are marked in black to conserve
processing power. Subsequently, these areas are resized, and
object detection is performed, as observed in Figure 3. Only
detections of cars, motorcycles, and bicycles with confidence
above a threshold are considered. The Non-Maximum
Suppression (NMS) algorithm is also employed to eliminate
unwanted or duplicate detections.

Fig. 3. Vehicle detection with Non-Maximum-Suppression.

Vehicle centroids are calculated and stored in a dictionary.
With each frame, the detected centroids are associated with the
dictionary based on the shortest distance [11] relative to the

centroid of the previous frame. A new vehicle is considered
and added to the dictionary with a new associated key if the
distance exceeds a threshold.

Using the last eight centroids of each vehicle, line
segments are formed and checked for intersections with
delimited areas for vehicle addition or removal. If an
intersection [12] occurs, the vehicle count is updated, and the
vehicle is ignored in subsequent detections to prevent
duplicates. Vehicles without new centroids detected for over
30 frames are removed to conserve memory.

Each vehicle's trajectory is defined by concatenating all
line segments of the vehicle, denoted as CViCV(i+1) where CVi
represents the centroid at index i of the vehicle V.

Figure 4 presents the application interface with the vehicle
count displayed in the upper-left corner as "C" for cars, "M"
for motorcycles, and "B" for bicycles. Yellow rectangles
outline the detection regions sent to the neural network, while
a black region is defined to prevent vehicle detection on the
highway near the campus.

Fig. 4. Code execution.

The green and red lines denote detection areas for
incrementing or decrementing vehicles. The light green and
white lines represent the car trajectories delimited by the white
rectangles. These lines assume random colors to describe each
vehicle's trajectory. When they cross the red or green lines,
they turn white, indicating the vehicle was detected, counted,
and will be excluded from subsequent detections.

In addition to the vehicle detection algorithm, a web
application was developed to display the number of vehicles
present and parking space availability on campus. Hosted on
an external web server, the application utilizes PHP, HTML,
CSS, and JavaScript, along with an SQLite database. Figure 5
illustrates the complete architecture diagram of the
application, emphasizing local image processing, data
transmission to a centralized web server, and end-user access
to this information.

The local server sends POST requests to the web server
through a REST API, inserting records for each detected
vehicle, including the date, time, vehicle type (car, motorcycle,
or bicycle), and detection type (entry or exit). The community
can then access real-time information about available parking
spaces on the campus by accessing a publicly available web
application.

ISSN 2447-8326. V.1 © 2023 BTSYM



2023 Brazilian Technology Symposium

Fig. 5. Complete application architecture.

The web application's user interface, depicted in Figure 6,
provides end-users with the available parking spaces for cars,
motorbikes, and bicycles, along with the total count. The
boxes indicating free parking spaces change color according to
their availability. If over 40% of spaces are free, the color is
green; for 10% to 40% free, it's yellow; and if below 10%, it's
red. Beneath the parking space details, an hourly histogram
illustrates the daily vehicle flow across the entire campus,
encompassing all vehicle types and parking areas.

Fig. 6. Web application interface.

III. RESULTS AND DISCUSSION

Throughout the application's conception, from architectural
modifications to model optimizations, the complexity of the
problem became evident. Balancing processing speed with the
necessary precision level and the available computational
resources proved challenging. After the model's development,
a comparison was conducted between manual vehicle counting
and the count derived from the vehicle detection algorithm.
This was done using a framerate of 8 frames per second (FPS)
on a 7th generation Core I5 7200U notebook with 8GB of
RAM. The obtained results were consistent for the analyzed
video time samples.

The detection accuracy is estimated to surpass 90% in a
definitive deployment scenario. This estimate takes into
account the various unpredictable variations in time, lighting,
and vehicles. All the hours of video analyzed by the
application represent only a subset of the potential scenarios
encountered in which success and effective performance were
achieved.

With the knowledge and autonomy gained during
development, the potential for optimizing this detection model
is evident. Opportunities include exploring alternative neural
network models, adjusting image processing to facilitate
detection, optimizing the centroid search algorithm, or even
replacing the method of line intersection detection with
polynomial interpolation aided by linear systems to verify
intersections.

IV. CONCLUSIONS

It is anticipated that this pioneering approach at Limeira's
Campus I will contribute to the creation of an environment
tailored to the needs of the community members, enhancing
mobility efficiently, safely, and sustainably. Additionally, it
aims to engage faculty and students in developing a conducive
space for embracing intelligent solutions in support of a Smart
Campus that positively impacts the community. This initiative
simultaneously showcases our capacity for scientific and
technological development.

With the continuation of efforts and the pursuit of future
optimizations, the expectation is for the vehicle traffic
monitoring and management system to achieve higher levels
of speed and reliability. This will further enhance the
application's autonomy and potential utilization at other
entrances of Campus I Limeira. Potential expansions to
Campus II or even for other applications are also within reach
through the release of the code in an open-source model.

ACKNOWLEDGMENT

The authors thank the National Council for Scientific and
Technological Development (CNPq) for the financial support.
and also André Cardoso for his support with the installation of
the camera used in this work.

ISSN 2447-8326. V.1 © 2023 BTSYM



2023 Brazilian Technology Symposium

REFERENCES

[1] IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E
ESTATÍSTICA. Vehicle Fleet. Rio de Janeiro: IBGE, 2013. Available
at: https://cidades.ibge.gov.br/brasil/pesquisa/22/28120. Accessed on
May 9, 2022.

[2] M.Y.I. Idris, Y.Y. Leng, E.M. Tamil, N.M. Noor and Z. Razak, 2009.
Car Park System: A Review of Smart Parking System and its
Technology. Information Technology Journal, 8: 101-113. Available at:
https://scialert.net/abstract/?doi=itj.2009.101.113. Accessed on May 7,
2022.

[3] Neves, A. R. M.; Sarmanho, K. U.; Meiguins, B. S. The Role of the
University in the Construction of Smart and Human Cities. Revista
Electronica de Sistemas de Informação, [s. l.], May-Aug 2017.
Available at:
https://www.proquest.com/openview/6dc5b34d62727ad904a4837ebadc
c168/1?pq-origsite=gscholar&cbl=178195. Accessed on May 8, 2022.

[4] Milano, D.; Honorato, L. B.. Computer Vision. Computer Vision, [s. l.],
2010. Available at:
https://www.academia.edu/download/35825905/2010_IA_FT_UNICA
MP_visaoComputacional.pdf. Accessed on May 8, 2022.

[5] Choose Flexible Forms of Virtual Machines. Available at:
https://www.oracle.com/br/cloud/compute/virtual-machines/. Accessed
on December 20, 2022.

[6] OPENCV. OpenCV: Cascade Classifier. Available at:
https://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifier.html.
Accessed on January 4, 2023.

[7] Q-ENGINEERING. YoloV4 Raspberry Pi 4. Available at:
https://github.com/Qengineering/YoloV4-ncnn-Raspberry-Pi-4.
Accessed on January 16, 2023.

[8] WIKIPEDIA CONTRIBUTORS. RTSP. Available at:
https://pt.wikipedia.org/wiki/RTSP. Accessed on January 16, 2023.

[9] BOCHKOVSKIY, A.; WANG, C.-Y.; LIAO, H.-Y. M. YOLOv4:
Optimal Speed and Accuracy of Object Detection. April 22, 2020.

[10]YOLOv4 Tiny Object Detection Model. Available at:
https://roboflow.com/model/yolov4-tiny. Accessed on January 28, 2023.

[11]WIKIPEDIA CONTRIBUTORS. Euclidean distance. Available at:
https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_d
istance. Accessed on February 12, 2023.

[12]WIKIPEDIA CONTRIBUTORS. Line–line intersection. Available at:
https://en.wikipedia.org/wiki/Line%E2%80%93line_intersection.
Accessed on February 20, 2023.

ISSN 2447-8326. V.1 © 2023 BTSYM


